The School of Natural Resources offers graduate programs leading to a Master of Science or Doctor of Philosophy in Natural Resource Sciences. The broad diversity of climate, habitat, hydrology, soils, & near-surface & subsurface geology across Nebraska provides a multitude of opportunities for field study in each of these areas. Our excellent faculty conduct research throughout Nebraska, across the United States, & around the world.

Excellent laboratory, computer, & field facilities are available for performing up-to-date analyses in all resource areas, as well as in water chemistry, GIS, geophysics, computer modeling, remote sensing, & geospatial image analysis. State, federal, & private natural resource organizations provide unique opportunities for cooperative research & degree-related work.

Many students focus their studies in one of our numerous specializations. These specializations are optional, well-defined areas of study that have been approved by the Graduate Council & appear on transcripts alongside degrees & majors. Each specialization has an unique set of requirements that must be met for a program to be considered completed.
Human Dimensions

The Human Dimensions specialization seeks to improve the stewardship of ecosystems and natural resources by understanding and affecting people’s thought and behavior toward natural and managed environments. This specialization offers both natural resources and social science courses to provide a well-rounded curriculum focused on human-environment interactions.

Adaptive Management

The Adaptive Management specialization is designed to provide a rigorous, focused graduate program that draws on faculty expertise in both adaptive management and structured decision making. Students enrolling in this emphasis area will be interested in the interface of research, management and policy.

Applied Ecology

Students in the Applied Ecology specialization focus on the interactions among ecosystem components. This specialization is designed for students interested in applying ecological principles to the management of terrestrial and aquatic ecosystems.

Bio-Atmospheric Interactions

The Bio-Atmospheric Interactions specialization provides students with a unique learning environment to promote an understanding of the interactions between the atmosphere and the biosphere. This specialization encourages cooperation among the community of scientists within the bio-atmospheric research area.

Climate Assessment and Impacts

The Climate Assessment and Impacts specialization provides students with unique opportunities to emphasize: understanding the interactions between climate and society; learning methodologies for climate assessment and impacts. Students selecting this specialization will be able to capitalize on the expertise of scientists and other students working on climate assessment, climate impacts, and problem-oriented policy research.

Geographic Information Systems

Geographic Information Systems (GIS) integrate hardware, software, and data for capturing, managing, analyzing, and displaying virtually all forms of spatial data. GIS allows us to view, understand, explore, interpret, and visualize data in many ways that reveal relationships, patterns, and trends. GIS technology cuts across many disciplines and applications ranging from the medical profession to natural resource management.

SNR’s Hydrological Sciences program, a specialization within the Natural Resource Sciences graduate program, aims to train the next generation of scientists studying the hydrologic cycle, its components and processes, and its complex interactions with human societies. Faculty and graduate students in this specialization incorporate field and laboratory research techniques to answer basic and applied hydrological questions in Nebraska and across the globe.

Remote Sensing

Remote sensing refers to any technique whereby information about objects and the environment is obtained from a distance. The Remote Sensing specialization focuses on the collection and analysis of remotely sensed data acquired through sensors deployed: at close range in the lab and operated in the field on various field vehicles and platforms from aircraft and satellites.