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«Explain the basic underlying science and interactions

« Discuss outstanding issues and challenges

« [llustrate the state of art in earth observing technologies and strategies
for environmental monitoring, assessment, and prediction
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SMAP Applications Early Adopter Program

"AF E} ELIS l. :; uu

NASS \-__._,/ .
l‘. Environment & Integra]

‘r‘orkshlre\".fa ter Canada
StormCeniter

b i _| BOISE STATE e
oy B e {"‘j : Bt
) '-1 A LV ariionT jee e~ -1
AGT{’?TUH L'MITED f""‘. Wadionnl Dou'-“uwn#(.rﬂ _i‘J_.g,..i_. _.J...-‘ ..ﬁ;.f“ - '\NCEP/'

@ it spear muses Lirpill NG, MWl eenee

PROTEZ IONE
CIVILE

52 EA teams proceeding with SMAP applications spanning
Agriculture, Weather, Floods, Droughts, Wildfires, Emergency
Response, Human Health, and National Security

Google

ECMWF NVYEC sam 4 g“

JLOCKNEED MARTIN
World Food

Georgia
\ ”“) @ Te%h |




Condensation

. Transpifation
Evaporation ’

from Oceans, fro ants
Lakes & Streams

AN AN
\X \\ Precipitation







mreremuaion|  NASA Earth Science | "" '.:V,'.PAC'E(2022)

H Implementation CARB (~2021)

memayops | Missions: Present through 2023 i

, . (<2021
B Extended Ops - . ~ MAIA (~20
" T Landsat 9 (2020)

Sentinel-6A/B (2020, 2025)

NI-SAR (2021)
ISS Instruments : e SWOT (2021)

LIS (2020), SAGE IIf (2020) \\\"’/ TEMPO (2018) ’ ] v InVEST/CubeSats

TSIS-1(2018), OCO-3 (2018), B " GRACE-FO (2) (2018) B,
ECOSTRESS (2018), GEDI (2018) / RAVAN (2016)

CLARREO-PF (2020) 5. ICESat-2(2018) NISTS IceCube (2017)

CYGNSS (8) (2019) (DSCOVES )

HARP (2018
JPSS-2 Instruments Suomi NPP ¢/ SMAP TEMPE(ST D)(2018)
(NOAA) ' (>2022) ;

OMPS-Limb (2019) . AABR = S S RainCube (2018)
g it ‘-. Landsat 7 QuikSCAT CubeRRT (2018)
— (USGS) (2017) B CIRiS (2018")
-, i / Terra (>2021) Scgg8e | CSIM (2018)
) . Landsat8
A (USGS)

* Target date,
(>2022) Aqua (>2022)

not yet manifested
= - CloudSat (~2018)
s CPM(>2022) S — _ CALIPSO (>2022)

Aura (>2022)

' \ - 0STM/Jason-2
0CO0-2 (>2022) . 7GRN 22)




Evolution of Satellite-Based Soil Moisture Remote Sensing
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Explain the Basic Underlying Science and
Interactions




Soil Moisture Captures Precipitation Memory

Soil Moisture Active
Passive Mission

| Global Precipitation
Measurement Mission,
Core Observatory

John Bolten (NASA GSFC)



Latitutde

80

60

40

20

o

N
o

b
o

o)
o

|}
@
o

Memory and Land-Atmosphere Interactions

Surface Soil Moisture Half-Life [Days]
Based on Water Cycle Fraction ch(f)

o

-150

-100

-50

0
Longitude

50

1.8

1.6

1.4

i 1.2

10.8

0.6

0.4

0.2

Water Cycle Fraction naturally yields
a non-parametric estimate of soil
moisture memory.

* Not based on fitting of autocovariance
* Not based on fitting of seasonal mean
(required for autocovariance)

Soil moisture memory is co-factor in

establishing land-atmosphere
feedbacks

Strong regional differences

D. Entekhabi (MIT)



: Land Surface Response to Storm Events
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(Left) Skill of forecasting the land surface response to rainfall for satellite-based soil moisture products. Skill is measured as the rank
coefficient of determination (R?) between pre-storm soil moisture and subsequent storm-scale runoff ratio (i.e., total runoff divided by
total rainfall) sampled across 16 basins. The SMAP Level 2 and Level 4 soil moisture products have the highest skill. Relatively lower values
for the Tropical Rainfall Measurement Mission Microwave Imager (TMI) and Soil Moisture Ocean Salinity (SMOS) missions reflect skill
obtained from earlier sensors. (Right) Boundaries (in red) of the 16 medium-scale (103-10* km?2) basins and total number of flash-flood
events during January 2015—September 2016 in the south-central U.S.

Wade Crow (USDA ARS)



Exchanges Between Land and Atmosphere

Even Though Soil Moisture is 10 ppm of the Global Water storage,.., — storage,

Budget, it Captures About 20% of the Water Cycle Water Cycle Fraction = T eCTi il
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Surface Soil Moisture is the ‘Gate’ Through Which All Exchanges of Water Between the Atmosphere and

Subsurface Must Pass

McColl et al. (Nature-Geoscience, 2016) Entekhabi (MIT)



Four LDAS systems are available from NASA/GSFC/HSL

GLDAS - Global LDAS 'f{ =g T
NLDAS — North American g
LDAS

NCA-LDAS — National
Climate Assessment
LDAS

FLDAS — Famine Early
Warning System Network
FEWS NET LDAS
( ) NLDAS & GLbAS

http://ldas.gsfc.nasa.gov/ NCA-LDAS Mocko et al., (NASA GSFC) |1




NLDAS soil moisture evaluations

NLDAS Phase 2: Four land-surface models (Noah-2.8, Mosaic, SAC, VIC-4.0.3) 1979-present,
running in operations at NOAA, with a 3.5-day latency

NLDAS-2.5: NLDAS-2 LSMs with 0-day latency, becoming operational at NOAA late 2018
NLDAS-3.0: New/upgraded LSMs using LIS with data assimilation. See white paper on LDAS
websites for details. Test data available informally; targeting 2019 for operations.

Future: Improving forcing, expanding domain, targeting 3-4km spatial resolution
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Ee soil moisture 0.901 candidate LSMs
against North 51 o against SCAN for
1 (b) 25 cm:°i: '":NwiA _ American Soil ZZZ o 0.631 = 5-cm surface soil
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NCA-LDAS:

Multivariate, Multisensor DA

D Soil moisture D Snow depth D Sevow cover
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Kumar et al., 2018 (JHM, early online release)

Model domain: Same as NLDAS (1/8t™-degree over CONUS)
Forcing data: NLDAS Phase 2 (w/ daily CPC gauge-based
precipitation)

Model: Noah-3.3 LSM with a 60-year spin-up, followed by a
37-year simulation; streamflow simulations using HyMAP
Data assimilation method: 1-d Ensemble Kalman Filter (EnKF)
Time period: Jan 1, 1979 to Dec 31, 2016
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Discuss outstanding issues and challenges




Data Assimilation vs.
Model Calibration

With model calibration:

1)

2)

the land model itself is
changed — values of
model parameter(s) are
optimized.

SMAP data contribute to
the parameter
calibration but not to the
updating of the
prognostic states during
a simulation.
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The present study
focuses on the
calibration of a certain
recharge parameter.

The value used in
the default model

too slow.

Calibrating the
<1: parameter allows
more realistic
recessions.

Koster (NASA GSFC)



How Can SMAP Faraday Rotation be Further

Faraday Rotation Correction for SMAP
and Soil Moisture Retrieval

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 2, FEBRUARY 2018

Corrected?
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Saji Abraham and David LaVine (NASA GSFC)




SMAP vs Modeled Soil Moisture Dynamics
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RESEARCH LETTER SMAP soil moisture drying more rapid than observed
10-1002/2016GLO69946 in situ following rainfall events
Peter J. Shellito’, Eric E. Small’, And Colliander?, Rajat Bindlish®, Michael H. Cosh?, Aaron A. Berg®,

David D. Bosch®, Todd G. Caldwell®, David C. Goodrich?, Heather McNairn®, John H. Prueger®,
Patrick J. Starks'®, Rogier van der Velde'', and Jeffrey P. Walker'?

0.1}

VSM (cm3 cm'3)

'Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA, 2NASA Jet Propulsion
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Peter Shellito (NASA GSFC)



SMAP vs Modeled Soil Moisture Dynamics
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Bias, RMSE and Correlation of Noah_MP at 10 California SCAN sites

* WLDAS: soil moisture
and groundwater
estimates at 1km
resolution for the
western US (PI: Matt
Rodell)

Configuration with 20
layers provides better
correlation.

Bailing Li (GSFC)




Loss Functions for Improved Observations

RMSE: RMSE: RMSE:
wiLoss Function, w/Loss Function, Assume

Measured P Forecasted P Persistence

)

They also go down,
though not as much, if
you use loss functions
in conjunction with
precipitation forecasts
(for soil moisture
forecasts)....
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00
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800
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00'L

Koster (NASA GSFC)



SMAP Retrievals Used for Precipitation Estimation

Some results! (One of the better estimations):

99444500 SAN FF{.ANCISCD F'.IUEF&I AT CLIFTON, AZ.'
Blue: observed Red: estimated

We can
characterize the
agreement in these
time series with the
square of the
correlation
coefficient, r?.

200
Day of Year

Randy Koster (NASA GSFC)



Streamflow Estimation
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Technologies and Strategies for
Environmental Monitoring,

Assessment, and Prediction




Can we Improve our Estimation of End Of Season Yield Using Satellite Observations?

(%)
Q
R
ge
=
c
o
5
©
)
)
an
)
>

Mladenova, I. E., J. D. Bolten, et al. 2017. IEEE JSTARS, 10 (4): 1328-1343
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Mapping Drought

SMAP Drought Index (September 2015) Palmer Z-Index

September, 2015

: . =1 _— (] — ] j =zl EE
Source: Vue , Mista and Entekhabi 275 290 128 120 190 250 Py
below -274 -1.99 +0.99 +249 +3.49 above

SMAP 3-Month Change in Soil Moisture 0-5 cm

SMAP Soil Moisture Change .Wﬂmal
(August-November 2016) Drought
C.'g:?lgr

Available to Weekly Drought Monitor authors

Source: JPL, SMAP Level 3 SMP
36 km: 08/29/2016 -11/27/2016
USDM 11/22/2016

N. Das (NASA JPL)



GRACE Data Assimilation for Drought Monitoring

U.S. Drought Monitor May 20, 2014

(Released Thursday, May. 22, 2014)

CONUS Valid 8 a.m. EDT

GRACE terrestrial water
storage anomalies (cm
equivalent height of water) for
May 2014 (Tellus CSR RLO5
scaled).

Process integrates data from GRACE and other satellites to produce timely
information on wetness conditions at all levels in the soil column, including ptonsine S e

groundwater. For current maps and more info, see http:// N
2 . . Ree
nasagrace.unl.edu/ nttp droughtmonitor.unt.odu/

The
.

M o £ xceptional Drought  Stat

U.S. Drought Monitor product for 20 May 2014.

2 5 10 20 30 70 80 90 95 98
Drought indicators from GRACE data assimilation (wetness percentiles relative to the period

1948-present) for 19 May 2014.
Rodell (NASA GSFC)



Satellite Enhanced Snowmelt Flood Predictions in the Red River of the North Basin (RRB)

University of New Hampshire, Jennifer M. Jacobs

Objective

Enhance the NOAA's National Weather Service’s (NWS) North Central River Forecast
Center’s (NCRFC) snowmelt flood predictions capacity in the Red River of the North
Basin (RRB). The RRB borders eastern North Dakota and western Minnesota.

Model: The Community Hydrologic Prediction System (CHPS) with the Sacramento Soil
Moisture Accounting (SAC-SMA) model and SNOW-17 snow model

Initial State Variables: Soil moisture (SM), Freeze-Thaw FT), Snowpack, snow covered
area (SCA)

Challenges

Ground observations of soil moisture and snow water equivalent (SWE) are relatively
scarce in the RRB, which makes accurate forecasting difficult.

Lack of antecedent SM conditions prior to winter onset causes errors in airborne gamma
SWE estimates

Lack of understanding of snowmelt processes and soil infiltration during soil freeze and
thaw

Status
1. Comparison of SMAP with CHPS modeled soil moisture

A: OSLMS ~ Grand Forks. ND (4/1 10 12/1)
£ i Figure 3. Scatter plot
: R ) \ [ : . between SMAP and
"W\ 5 \ 'Vﬁ* oo by "\"k"f"'&?.‘”"‘ gt CHPS upper zone SM
N S i ge e pov  fraction from4.1to
- ¥ W ... 12.1,2016inthe
= Grand Forks, ND

OPS S (Retatve e

BAAP M (vohsmatric)

Figure 2. Time series of SMAP SM, CHPS SM fraction, and ground-based SM in the Grand Forks, ND

2. Daily SM products in the RRB are provided to NOAA forecasters biweekly

Figure 3. Daily SMAP SM values in the RRB for the three weeks leading to the first freezing conditions capture strong drying conditions. Weeks 1 (10/15 to 10.21), 2 (10.22 to 10.28), and

3 (10.28 to 11.3) from left to right.

Methodology/Approach

1. SMAP SM is being used to support modifications to the SAC- Forcing _[ Maan Ansal Precipitation (MAR)
SMA model state in CHPS and evaluated using streamflow e 1Ases] Temesranre IAT)

outputs with the USGS data. poaw: SNOW-17 Modal |+
2. SMAP SM is being compared to airborne gamma z‘o'_i _{ i
observations and used identify wetting and drying after Fall e

baseline SM flights

Flow | UniT HYDROGRAPH
. e L . Rout =
3. SMAP FT identification freeze onset date by subbasin Forameg CoRTE: SEraEa
- SMAP FT will be compared to in-situ observations -
- SMAP SM values prior to freeze onset date will extracted to  quipus _{ Reivar Flaws and
Model State Variables

adjust state and frozen soil hydraulic parameters

— — —#[_Forecaster |- == =

Uners

Figure 1. CHPS flood forecasting model and
procedures (Modified from diagram by CBRFC)

 FORPHE RN PAPSSCTRRRRERe, O] |

Schedule and Issues

+ Evaluation of SMAP SM with CHPS SM (ongoing)

* SMAP SM support of gamma baseline SM updates
(ongoing)

tehsnitnilatign of SM from SMAP into the NCRFC flood
forecasting model will be conducted to update SAC-SMA
upper zone moisture (Spring - Summer 2018).

« SMAP FT identification freeze onset date by subbasin
(In Progress)




SMAP Soil Moisture Products Released in Google Earth Engine and the USDA

Global Crop Assessment Decision Support System
lliana E. Mladenova , Nazmus Sazib, and John D. Bolten, Hydrological Sciences Lab , NASA GSFC

Assessing Drought condition across South Africa Soil moisture products sample over the U.S. using GEE tools

Soil moisture anomaly

Surface soll moisture mean by month of the year

Surfacs sall malsture ancmaly by month of the year
——— 55ma

: TRk \ aa //\\/\ A
g M T il s

ub surface scil molsturs mean by month of the year

AF LA = .
2018/01/13-2018/01/15 2 \/\

Objective: 18 . : a0 : .

To provide soil moisture products to the U.S. Department of Agriculture (USDA), Foreign Agricultural Services (FAS) for advancing the agricultura

productivity forecasting ability of the Crop Condition Data Retrieval and Evaluation Data Base Management System.

Highlights:

*  SMAP-based product has been approved by USDA FAS and is being operationally delivered to USDA FAS (Feb, 2018)

* The SMOS- and SMAP-based products and customized analytical tools have been vetted by Google and are on the public-facing Google Earth
Engine. This is the first model-enhanced global soil moisture dataset available on Google Earth Engine (March, 2018).

= gupm

'“\// N

Earth Sciences Division — Hydrospheric and Biospheric Sciences



African Flood and Drought Monitor
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Water Usage From Large Dams Comprising The Western Cape Water Supply System (WCWSS)

€TV OF CAPE TOWN,
ISIXEXO SASERAPA
STAD KAAPSTAD

DAM STORAGE (%)

30 April 2018
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Western Cape Water Supply System (WCWSS) Weekly Dam Drawdown Tracker
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Water Stored in Major Dams Compi

g Western Cape Water Supply System (WCWSS)

STORAGE
MAJOR DAMS CAPACITY % % % % % %
m 30 April 2018 Previous week 2017 2016 2015 2014

BERG RIVER 130010 383 374 333 26, 551 889
STEENBRAS LOWER 33517 388 406 303 409 519 463
STEENBRAS UPPER 31767 61.1 851 549 548 58.8 825
THEEWATERSKLOOF 480188 13 103 174 325 538 738
VOELVLI 164095 144 138 187 204 462 50.7
WEMMERSHOEK 476 5 360 409 528 608
TOTAL STORED 898 221 187939 179711 204695 284391 472978 645479
% STORAGE 209 200 228 kg 52.7 719
NOTES:

) Capacity i pe upply nai

Wai

2) Al figy pri year except v
3) The last 10%of a

100

o Dam Levels for 30 April 2014-2018

2014 2015 2016 2017 Previous week 30 April 2018

BERG RIVER LOWER UPPER = 00F  mVOELVLEI WEMMERSHOEK
Water Stored in Minor Dams Within Cape Town

'STORAGE
MINOR DAMS CAPACITY % %
w 30 April 2018 Previous week 2017 2016 2015 2014

ALEXANDRA (Tabi bousisin) 126 680 608 307 330 00 457
DE VILLIERS (Tabl Wouniain) 243 560 573 445 744 474 073
HELY-HUTCHINSON (Table Mountain) 925 772 701 98.8 726 0.0 304
KLEINPLAATS (Simoni's Town) 1368 388 388 412 312 263 542
LAND-EN-ZEEZICHT (Heitrbery) 451 899 882 760 136 00 00
LEWIS GAY (simon's Town) 182 68.5 584 129 15 655 336
VICTORIA (Table Mountain) 128 37.9 399 71 206 0.0 98.1
WOODHEAD (Tae Mousiain) 054 580 579 724 793 484 s12

Ten Year Graph Indicating Volume of Water Stored in Major Dams Compi

Water Supply System (WCWSS
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Making progress possible. Together.

Percentage Water Stored in Major Dams (WCWSS)
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CCT Water Quality Sample Pass Rate
Water Quality Compliance (%) Target (%)
9963 )
9064 %
9067 o
9967 9
9071 %
9065 @
9962 9
9959 9
9057 o
9049 o
99.44 9
9043 %
9938 9
Notes:
ng water Affcan . Complance, 1 prescribed
chemical and target of 98% ping and
January),
Rainfall
RAINFALL (mm) 23Apr  20Apr  25-Apr  26Apr  27-Apr  2B-Apr  29-Apr Ao
Totl" LT Average
Blackheath Upper 82 250 10 320
Brookiands 200 280 710 649
Newlands 25 25 700 50 1670 1236
Steenbras 68 01 28 55 531 704
Table Mountain (Woodhead) 210 230 25 105 109.7 1273
Theewaterskioof 25 B0 03 20 191 564
Tygerberg 90 25 %1 12 27 679 408
Vosiviel 100 30 10 100 450 a5
Wemmershoek 02 30 159 15 1303 625
Wynberg 270 255 50 30 861 83

Notes: “Totallcumulative rainfall for month indicated above
LT: Long Ter

e capeton g

Making progress pessitla. Tegether,
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2012 2014 2016

EOSDIS FY2015 Metrics
Unique Data Products 9,462
Distinct Users of EOSDIS Data and Services 26M
Average Daily Archive Growth 16 TB/day
Total Archive Volume (as of Sept. 30, 2015) 14.6 PB
End User Distribution Products 1.42B
End User Average Daily Distribution Volume 32.1 TB/day




High Performance Computing and The Rise of the Cloud
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NASA Applied Sciences Program
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Applied Sdences Program

NASA Applied Sciences Program
Water Resources

The goal of the ASP Water Resources application area is to apply NASA satellite
data to improve the decision support systems of organizations and user groups
that manage water resources. The ASP Water Resources application area partners
with Federal agencies, academia, private firms, and international organizations.

LEARN MORE

https://appliedsciences.nasa.gov/



Thank You

John Bolten
NASA Applied Sciences Program
Water Resources

john.bolten@nasa.gov

MOISST, Lincoln, NE
June 5, 2018




