

Developing Integrative Soil Moisture Products to Improve Drought Monitoring in the United States

TRENT FORD¹, STEVEN QUIRING², JESSICA LUCIDO³, MIKE STROBEL⁴, MAKENZEE LOFT¹, ANGEL ARCURI¹ ¹DEPARTMENT OF GEOGRAPHY & ENVIRONMENTAL RESOURCES, SOUTHERN ILLINOIS UNIVERSITY ²DEPARTMENT OF GEOGRAPHY, OHIO STATE UNIVERSITY ³OFFICE OF WATER INFORMATION, U.S. GEOLOGICAL SURVEY ⁴NATIONAL WATER AND CLIMATE CENTER, USDA-NRCS

6/11/18

National Soil Moisture Network

• Daily observations from 1,500+ *in situ* monitoring stations

Soil Moisture Networks

- Delaware Environmental
 Observing System
- Illinois Climate Network
- Iowa Environmental Mesonet
- Kansas Mesonet
- Missouri Agricultural
 Weather Database
- North Dakota Agricultural
 Weather Network
- NOAA HMT
- Oklahoma Mesonet
- SCAN
- Snotel
- SOILSCAPE
- South Dakota Mesonet
- University of Georgia
- Weather Network
- USCRN
- West Texas Mesonet

nationalsoilmoisture.com

6/11/18

Current Project Objectives

Leverage ongoing NSMN efforts, integrate diverse sources of soil moisture information to improve near real-time drought monitoring across CONUS

- 1. Assess the fidelity of various *in situ* soil moisture observations and satellite remote sensing- and model-based soil moisture products
- 2. Integrate remote sensing and modeled soil moisture information with *in situ* measurements to develop a national-scale, near-real time soil moisture product for drought monitoring
- 3. Design and develop a proof-of-concept cyber infrastructure for delivery of the gridded soil moisture product

Soil Moisture Drought Monitoring – Models

- CPC one-layer "leaky bucket" hydrological model
- NLDAS-2
- National Water Model WRF-Hydro
- Noah MP
- SMAP L4 surface and root zone

SOIL MOISTURE-DROUGHT MONITORING

5

Soil Moisture Drought Monitoring – Remote Sensing

- SMAP L3 Radiometer
- SMOS L3 Global Map
- SMAP/Sentinel-1 L2 Radiometer/Radar
- ESA CCI merged passive/active

Objective 1: In Situ Data Validation

- Relative observation error estimated as the ratio of error variance (δ) to real variance (σ) of daily soil moisture (Dirmeyer *et al.* 2016)
- δ/σ related to autocorrelation of daily soil moisture
- Surficial soil moisture exhibits higher proportion of random observation error
- Further results suggest in-ground observations exhibit less relative observation error than surface-based remote sensing observations

Relative observation error of daily, summer (JJA) soil moisture from in situ monitoring networks.

SOIL MOISTURE-DROUGHT MONITORING

7

Comparison Methods

- 1. Determine a fixed period for each network over which to compare model/satellite datasets
- 2. Vertically interpolate observations to model layers, use shallowest sensor (< 10 cm) for satellites
- **3**. Average daily soil moisture (VWC or percentiles of VWC) over all *in situ* stations within each model/satellite grid cell

	DEOS	Enviroweather	ΝΟΑΑ ΗΜΤ	OK Mesonet	SCAN (MS & AL)	SNOTel (UT & CA)	SoilScape	WTX Mesonet
СРС	4	10	10	10	10	10	5	10
NLDAS-2	4	10	10	19	14	14	5	16
NWM	4	10	10	10	10	10	5	10
SMAP L4	3	3	3	3	3	3	3	3
SMAP L3	3	3	3	3	3	3	3	3
SMOS L3	4	7	7	7	7	7	5	7
ECV	4	10	10	19	14	14	5	16
SMAP/Sent-1	3	3	3	3	3	3	3	3

Record length (years) for *in situ*-model/satellite soil moisture comparison.

6/11/18	SOIL MOISTURE-DROUGHT MONITORING	8

Soil Moisture Dataset Validation – Model Variability

Standard deviation of daily summer (JJA) soil moisture from model datasets (y-axis) and in situ stations (x-axis).

SOIL MOISTURE-DROUGHT MONITORING

9

Soil Moisture Dataset Validation – Satellite Variability

Standard deviation of daily summer (JJA) soil moisture from satellite datasets (y-axis) and in situ stations (x-axis).

WTX Mesonet 0.20 SoilScape 0.12 **SNOTel UT SNOTel CA** 0.04 SCAN AL SCAN MS -0.04**OK Mesonet** NOAA HMT -0.12 Enviroweather ECV SMOSL3 DEOS -0.20 cm³ cm⁻³ CPC Noah1 Noah2 Noah3 Nosaic1 Nosaic2 NVM1 NWM2 NWM3 4 Surf Rzone AP L3 SMAP L4 RZONE SMAP RZO

Soil Moisture Dataset Validation – Difference (bias)

Model/Satellite JJA VWC bias, by network and dataset.

6/11/18

Satellite Validation – Difference by Percentile

Drought-focused Comparison: Drought Impacts

- 1. NDMC Drought Impact Reporter: county-level impact reports
- Reports collected (including impact start date) for 2008-2017 for all counties in which an *in situ* station resides
- 3. Duplicate impacts, impacts that occurred at great lags to drought conditions were removed
- 4. Daily VWC at all *in situ* stations or model/satellite grid cells over the counties averaged to achieve one, network-level dataset
- 5. Percentiles computed from daily VWC record, averaged to a weekly time step

http://droughtreporter.unl.edu/map/

Drought-focused Comparison: Drought Impacts

- Calculate rate at which datasets show drought conditions (< 20th percentile) corresponding to drought impacts
- 2. Drought "hit rates" computed for lead times ranging from 1 to 8 weeks prior to reported impact start date
- 3. Drought impact accuracy score is the integral of all drought hit rates, from 1 to 8 week leads; provides a measure of the reliability of datasets to show drought leading up to a drought impact

http://droughtreporter.unl.edu/map/

Drought-focused Comparison: Drought Impacts

 Figure shows the percent of drought impacts reported in West Texas for which each soil moisture product showed drought conditions (< 20th percentile), as a function of the time (# weeks) prior to the reported drought impact.

Drought-focused Comparison: Drought Impacts	Dataset	Average Drought Score
	СРС	0.502
In Situ 75 cm	Noah 0-10 cm	0.403
In Situ 60 cm	Noah 10-40 cm	0.441
In Situ 25 cm	Noah 40-100 cm	0.474
ECV	Mosaic 0-10 cm	0.471
SMOS L3	Mosaic 10-40 cm	0.490
Mosaic 40-200	Mosaic 40-200 cm	0.505
Mosaic 0-10	SMAP L4 Surface	0.395
Noah 40-100	SMAP L4 Root Zone	0.419
Noah 10-40	SMAP L3	0.288
CPC	SMOS L3	0.222
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50	ECV	0.303
Accuracy Score	In Situ 0-10 cm	0.340
Top panel shows accuracy scores by dataset for drought impacts over	In Situ 10-20 cm	0.359
for all datasets, averaged over all networks.	In Situ 20-50 cm	0.339
	In Situ 50-100 cm	0.453
6/11/18 SOIL MOISTURE-DROUGHT MONITORING		18

Conclusions so far...

- Ratio of error variance (Dirmeyer *et al.* 2016) a solid means for assessing the fidelity of *in situ* networks/stations
- NDMC drought impacts provide tangible evidence of drought; however, working with impact reports comes with several complexities/difficulties
- For most areas: 50-100 cm *in situ* sensors show drought corresponding to reported impacts at higher rates than more surficial layers
- Models particularly 10-100 cm layers show drought corresponding to reported impacts at higher rates than satellite datasets
- SMAP L4 products match best *in situ* daily VWC variability; SMAP L3 exhibits the lowest difference (bias)

THE OHIO STATE UNIVERSITY

Next Steps Soil moisture percentile comparison USDM drought status comparison Expansion to 1,500+ stations

Development/application of integration methods

Trent Ford – twford@siu.edu Steven Quiring – quiring.10@osu.edu Jessica Lucido – jlucido@usgs.gov Mike Strobel – michael.strobel@por.usda.gov

USDA

science for a changing world

6/11/18