EVAPOTRANSPIRATION ESTIMATES AT DIFFERENT SCALES USING REMOTE SENSING

Christopher Neale Daugherty Water for Food Global Institute

2018 MOISST Workshop

Outline

- Remote sensing approaches for monitoring evapotranspiration
- Satellite based approaches for irrigation water management and crop water productivity at field scales
- Global Daily ET retrieval application

Nebraska: A Substantial Irrigator

Precipitation is the Ultimate Water Source

Average Annual Precipitation Decreases at About 75 mm per 100 km

Water Control Programs in Nebraska

- Allocation Programs Limit Volume of Pumpage Over a Period of Time
- Expansion Limits Restrict Development of New Wells or New Irrigated Areas
- Upper Big Blue Considering Allocation Program
- Other Western States Have Similar Issues/Programs

Waterfor Food DAUGHERTY GLOBAL INSTITUTE at the University of Nebraska Depletion as Fraction of Saturated Thickness of the Aquifer (McGuire , 2011)

Depletions in southern High Plains > 50% of saturated thickness

Small area in Nebraska > 25% of saturated thickness

Methods of Estimating Evapotranspiration (ET) from Remote Sensing:

Crop coefficient and reference ET:

- Reflectance-based crop coefficient models where vegetation indices are related to ET crop coefficients. Relationships are typically crop specific.
- Use shortwave (Visible, NIR) bands of UAV, airborne or satellite instruments.

Energy balance models:

- One layer models examples: empirical models (OLEM), SEBS, SEBAL, METRIC, SSEBop
- Two-source model (TSM), ALEXI-DisALEXI
- Detailed Process models
- EB models require the use of both the thermal infrared and the Visible/NIR bands **Hybrid Methodologies**:
- Combine energy and water balance models Hybrid ET (SETMI)

Reflectance-based Basal Crop Coefficient Kcb & Water Balance

Water for Food DAUGHERTY GLOBAL INSTITUTE at the University of Nebraska

Rationale for re-examining Kbcrf for Corn

- Original research in the mid 1980's was based on very different varieties with a more planophile leaf structure, shorter plants and planted to a lower plant population reaching lower maximum LAI values in the field
- New hybrid varieties have an erectophile upper canopy, are taller and planted at a higher density reaching higher LAI values in the field

Reflectance based Kcb Transformations

Reflectance-based crop Coefficients

Are obtained by linearly relating the NDVI or SAVI of bare soil with the NDVI or SAVI at effective full cover the point of maximum ET on a crop coefficient curve

NDVI = (NIR – Red) / (NIR + Red)

SAVI = (NIR - Red) (1+L) / (NIR + Red + L)

Effective full cover occurs at LAI varying from 2.7 to 3.5 depending on the crop and with percent cover around 80%

SAVI and NDVI are vegetation indices estimated from Red and Near-Infrared bands of satellite, airborne sensor or ground radiometers

$$\underline{K_{ctf}} = \frac{(SAVI - SAVI_{BARE SOIL}) * (\underline{K_{cb EFC}} - \underline{K_{cb BARE SOIL}})}{(SAVI_{EFC} - SAVI_{BARE SOIL})} + \underline{K_{cb BARE SOIL}}$$
Neale et al., 1989; Bausch and Neale, 1989
Bausch, 1993

Carbon Sequestration Research Facility at the UNL Agricultural Research and Development Center, Mead

Re-analyzing the approach to convert VI (SAVI) in crop coefficients for irrigation management.

Re-analyzing the approach to convert VI in crop coefficients for irrigation management.

$$\mathbf{K}_{cb} = \mathbf{K}_{cb,max} \times \left[1 - \left(\frac{\mathbf{VI}_{max} - \mathbf{VI}}{\mathbf{VI}_{max} - \mathbf{VI}_{min}} \right)^{k/k} \right]$$

- Non-linear relationships for both crops
- General good agreement with moderate differences for minimum SAVI values
- Need to consider the role of bare soil in ET rates also in the absence of plant development

at the University of Nebrask

New Reflectance based Kcb for Corn and Soybeans

Reflectance-based Crop Coefficients Redux: For Operational Evapotranspiration Estimates In The Age Of High Producing Hybrid Varieties. 2017. Isidro Campos; Christopher M.U. Neale; Andrew E. Suyker; Timothy J. Arkebauer; Ivo Z. Gonçalves. Agricultural Water Management.. Vol. 187, Pages 140-153. http://dx.doi.org/10.1016/j.agwat.2017.03.022

New Reflectance based Kcb for Corn and Soybeans

The Hybrid ET model¹

Diagnostic SVAT Scheme The Two-Source Energy Balance Model (TSEB)^{2,3}

LE = Rn - G - H

² Norman and Kustas (1995), ³Li, et al.(2005)

Prognostic Modified FAO-56⁴ water balance in the root zone

Modified with reflectance -based basal crop coefficient (Kcbrf)⁵

⁴ Allen et al. (1998), ⁵Neale et al. (1989)

¹Neale et al. (2012), Soil water content estimation using a remote sensing based hybrid evapotranspiration modeling approach.

In Advances in Water Resources, Volume 50, December 2012, Pages 152-161, ISSN 0309-1708

ET₀ estimated using

 $ET_a = K_c \cdot ET_0 \checkmark$

 $K_c = K_{chrf} \cdot K_a + K_e$

Penman-Monteith Equation

Grass Reference Crop

Two-Source Energy Balance Model (TSEB)

The Hybrid Model

- Combined *K*_{cbrf} water balance with TSEB
- Water balance (WB) ET updated using statistical interpolation (Geli, 2012; Neale et al., 2012):

 $ET_{WB-adjusted} = ET_{WB} + W(ET_{TSEB} - ET_{WB})$

- W is a function of the respective "error variance" of each model
- Differences are attributed to K_s and thus modeled depletion. Both are subsequently updated.

Geli, H.M.E. 2012. *Modeling Spatial Surface Energy Fluxes of Agricultural and Riparian Vegetation Using Remote Sensing*. Ph.D. Dissertation. Civil and Environmental Engineering Department, Utah State University, Logan, UT. Paper 1165. Available at: http://digitalcommons.usu.edu/1165.

Neale, C.M.U, H.M.E. Geli, W.P. Kustas, J.G. Alfieri, P.H. Gowda, S.R. Evett, J.H. Prueger, L.E. Hipps, W.P. Dulaney, J.L. Chávez, A.N. French, T.A. Howell. 2012. "Soil water content estimation using a remote sensing based hybrid evapotranspiration modeling approach." *Adv. in Water Res.* 50: 152-161.DOI: 10.1016/j.advwatres.2012.10.008

The Hybrid Model¹

¹Neale et al. (2012), Soil water content estimation using a remote sensing based hybrid evapotranspiration modeling approach.

In Advances in Water Resources. Volume 50, Pages 152-161, ISSN 0309-1708, 10.1016/j.advwatres.2012.10.008.

Methods – SETMI Interface

- Spatial EvapoTranspiration Modeling Interface (SETMI)
- Operates in ArcGIS Environment

Geli, H. M. E. and C.M.U. Neale, (2012), Spatial evapotranspiration modeling (SETMI), Proc. IAHS 352, Remote Sensing and Hydrology (September 2010), ISSN 0144-7815

Geo-spatial Data: Crop Classification Layers

Provided by USDA NASS, based on Landsat Thematic mapper and other satellite image data

Northeastern Nebraska Corn/Soybean Rotation

Many satellite-based evapotranspiration models require the knowledge of the crop type at the surface

Digital Soil Survey Information

Map of water holding capacity in the 1st m. profile R

RGB color composition, L8 Date 07/19/2913

Source: USDA Natural Resource Conservation Service (http://websoilsurvey.sc.egov.usda.gov/Ap p/WebSoilSurvey.aspx)

Variables include: Soil type, texture, depth, layers, water holding capacity, infiltration rates, organic matter content etc.

Landsat 5, 7, 8 sequence displayed Using the SPIDER Software from UCLM, Spain

Satellite/Sensor	Time Resolution	Image size	Spatial resolution
Landsat 8 LDCM	16 days	185 km x 185 km	30-100 m
Landsat 7 ETM+	16 days	185 km x 185 km	30-60 m
DMC constellation	Up to daily revisit	Up to 600 x 600 km	Up to 20 m
Sentinel-2	15 days	290 km x 290 km	10 m
IRS-AWIFS-P6	6 days	740 x 740 km	56 m
IRS LISS III-1C	24 days	142km x 142km	23 m
IRS LISS III-1D	25 days	148km x 148km	23 m
CBERS CCD	26 days	113km x 113 km	20 m
SPOT 5	Up to daily revisit	60 km x 60 km	10 m
FORMOSAT	Up to daily revisit	24 km x 24 km	8 m
Rapid eye	Up to daily revisit	25 km x 25 km	5 m
IKONOS	3 days	13 km x 13 km	4 m
QUICKBIRD	1-5 days	16.5 km x 16.5 km	2.44 m

Operational EO satellites with medium to high spatial resolution

Example of Application in Nebraska

• Center Pivots

Location of the Upper Republican River Basin in southwest Nebraska

UPPER REPUBLICAN RIVER BASIN 201 DOY (max. IAF) 57 DOY 249 DOY 265 DOY 281 DOY 345 DOY

Soil Adjusted Vegetation Index - SAVI

57 DOY

201 DOY (max. SAVI)

249 DOY

265 DOY

281 DOY

345 DOY

○1985 ○1986 ○1990 ○1993 ○1996 ○1997 ○1999 ○2002 ○2004 ○2005 ○2008 ○2009 O2012

Concept: Prescriptions for Managing Variable Rate Irrigation

Operational Evapotranspiration Determination in the MENA Region for ESI and Drought Monitoring

Christopher Neale

Water for Food Institute University of Nebraska

Christopher Hain

NASA MSFC, Alabama

Martha C. Anderson

USDA-Agricultural Research Service, Hydrology and Remote Sensing Laboratory

Mitch Scull

ESSIC, University of Maryland

WHAT WE ARE CONDUCTING FOR THE MENA REGION

- Use of ALEXI energy balance model to obtain daily surface ET at 375 m resolution from the VIIRS Satellite Instrument
- This ET product will be used for the estimation of the Evaporative Stress Index, used in the Composite Drought Index
- Disaggregate ET using DisALEXI models for field scale water productivity estimates (crop yield and actual ET)
- Other benefits: the 375 m ET product can also be used for water accounting and availability in watersheds and river basins

Supplementing ALEXI Capabilities with Polar Orbiting Sensors

A technique has been developed and evaluated using GOES data to train a regression model to use day-night LST differences from MODIS to predict the morning LST rise needed by ALEXI. The regression model can provide reasonable estimates of the mid-morning rise in LST (RMSE ~ 5 to 8%) from the twice daily VIIRS LST observations.

The ALEXI model runs the TSEB

Development of a High-Resolution (375-m) VIIRS ET Product

Data coverage for VIIRS ET product. Sample location at Nile Delta

*Shading indicates 1-km percentage of cropland from global synthesis of several RS-based land use maps

Current VIIRS Latent Heat Flux (W m⁻²) Capability (375-m)

Development of a High-Resolution (375-m) VIIRS ET Product

Annual ET estimated from integrating daily values for 2015

Development of a High-Resolution (375-m) VIIRS ET Product

Input data: ALEXI daily ET

Nile Delta Irrigation

VIIRS daily ET mm/d

 Daily ET calculated at VIIRS 375 m data using the ALEXI model.

Initial results: Landsat daily ET

Nile Delta Irrigation

Landsat daily ET mm/d

Landsat Daily ET downscaled from ALEXI using the PyDisALEXI model.

VIIRS Satellite Global Daily ET Product (GLODET) WEB Interface

- Users will register to view and download the product
- Updates, track the applications and research using the product

Proposed 15 x 15 degree processing tiles (375-m) VIIRS ET Product

Expansion of GLODET

- Funded project with University of Sao Paulo by CAPES/ANA: Brazilian Federal Research and Water Resources Agencies"Estimation of Evapotranspiration through Remote Sensing for Management of Water Resources in Brasil"
- Collaboration between University of SaoPaulo, DWFI and US Partners, Federal University of Rio Grande do Sul, Federal University of Santa Maria and INPE (the Brazilian Space Agency)
- Funding will cover the costs of travel and perdiem for exchange of researchers US/Brazil and post-docs and PhD students.
- Main objective: Verification of Daily ET product using network of flux towers and watershed/basin scale water balance estimates

PROPOSED PRODUCTION TIMELINE FOR THE GLOBAL VIIRS ET PRODUCT:

- Testing the product in different regions of the world with local partners that are running eddy covariance flux towers or networks of automated weather stations
- MENA effort: Tunisia, Morocco, Egypt, Spain, Southern France, Italy
- Other Countries: India, Brazil, USA
- Ameriflux, FluxNet
- Serve the daily ET product to collaborators in different countries and provide PyDisALEXI for downscaling

JAZZ IN JUNE TONIGHT Thank you!

cneale@nebraska.edu