Using CRN data in the development of a gridded nationwide soil moisture product

Michael S. Buban, Temple R. Lee and C. Bruce Baker NOAA/ARL/ATDD, Oak Ridge TN

Background

- Long-term high-quality
 observations ~ 114 stations
- Currently ~7 years of soil moisture observations

 Develop a technique to use CRN stations as "anchor points" to characterize soil moisture conditions as a function of soil properties and atmospheric conditions.

Soil moisture products

Requirements:

- ◆Temporal scales: Weekly, monthly, daily
- ◆Spatial scales: Hydrologic Unit Code, census, state/county
- ◆In situ Depths (cm): 2, 5, 10, 20, 50,100
- ◆Surrogate data: National Cooperative Soil Survey and its Soil Survey Geographic Database (SSURGO) and State Soil Geographic Database (STATSGO) points, land cover, bench mark soils
- ◆All raw data behind maps should be available: time series, water year

Monitoring and Forecast Products:

- ◆Volumetric water content
- ◆Percent saturation
- ◆Soil temperature daily average max, min

CRN-soil property comparison

- A 4.05 km analysis grid is produced, which corresponds with available daily precip/ET grids
- For every ~4 km grid box there are 45x45 = 2025 90m subgrid-scale soil property boxes

If the SSURGO/STATSGO analysis of each of these soil constituents are within 5% of the soil characteristics of a CRN station, it is considered a "match".

%	CRN	ST/SU
Sand	10	8
Silt	60	66
Clay	30	26

match

%	CRN	ST/SU
Sand	10	8
Silt	60	64
Clay	30	28

CRN-soil percentages

For each 4-km
 analysis grid box, the number of matches are counted

X	X	X	X
Х	X	X	
Х	Х		X
90m		X	X

	Х		
Х		X	
90m		X	

4/16 = 25%

12/16 = 75%

CRN-soil property comparison

On this 4-km grid, the % of 90 m analyses that match at least one CRN station measurement are plotted. Note the majority of the US is highly represented by the CRN measurements

Varying statistics

Different thresholds can be used to determine if a 90 m soil analysis is considered a "hit" with a CRN station measurement.

Threshold	100% of 90 m tiles covered in 4 km box	90% of 90 m tiles covered in 4 km box	50% of 90 m tiles covered in 4 km box
20%	91.7	96.9	99.9
10%	71.6	87.7	97.4
5%	20.6	48.2	82.6
2%	1.0	3.0	17.7

• At different thresholds, various % of the US is represented by a 4-km grid box containing a certain % of hits, and this % increases with widening threshold window.

Even using a 5 percent threshold, the % of 90 m analysis points within a given 4-km box peaks at 100% then decreases

Soil property-vegetation thresholds

- After matching the 90 m SSURGO/STATSGO and CRN measurement datasets, the 90 m vegetation types from the National Land Cover Dataset (NLCD) was applied.
- After applying the vegetation threshold there are percent of matches decreases, however almost all 4-km grid boxes have some matches

Next Steps

- The large areal extent of representativeness suggests that this technique can be adequately applied over much of the US, and thus has the potential to improve soil moisture products
- We will develop a transfer function using the 4km gridded products for ET (ALEXI) and precipitation (PRISM) as forcing functions to see how the measured soil moisture and temperature respond for a given soil and vegetation type for each of the CRN anchor points.
- The transfer functions will be applied to all of the surrogate 90 m subgrid-scale data points that match a particular CRN "anchor point" with the same soil characteristics and vegetation type, thus allowing for a derived soil moisture value at each point.
- The resulting distribution of soil moisture from the 90 m data points will be used to statistically define the soil moisture on the 4-km grid via weighting functions.