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Despite the importance of groundwater recharge (GR), its accurate estimation still remains one of the
most challenging tasks in the field of hydrology. In this study, with the help of inverse modeling, long-
term (6 years) soil moisture data at 34 sites from the Automated Weather Data Network (AWDN) were
used to estimate the spatial distribution of GR across Nebraska, USA, where significant spatial variability
exists in soil properties and precipitation (P). To ensure the generality of this study and its potential broad
applications, data from public domains and literature were used to parameterize the standard Hydrus-1D
model. Although observed soil moisture differed significantly across the AWDN sites mainly due to the
variations in P and soil properties, the simulations were able to capture the dynamics of observed soil
moisture under different climatic and soil conditions. The inferred mean annual GR from the calibrated
models varied over three orders of magnitude across the study area. To assess the uncertainties of the
approach, estimates of GR and actual evapotranspiration (ETa) from the calibrated models were compared
to the GR and ETa obtained from other techniques in the study area (e.g., remote sensing, tracers,
and regional water balance). Comparison clearly demonstrated the feasibility of inverse modeling and
large-scale (>104 km2) soil moisture monitoring networks for estimating GR. In addition, the model
results were used to further examine the impacts of climate and soil on GR. The data showed that both
P and soil properties had significant impacts on GR in the study area with coarser soils generating higher
GR; however, different relationships between GR and P emerged at the AWDN sites, defined by local
climatic and soil conditions. In general, positive correlations existed between annual GR and P for the
sites with coarser-textured soils or under wetter climatic conditions. With the rapidly expanding soil
moisture monitoring networks around the globe, this study may have important applications in aiding
water resources management in different regions.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Knowledge of groundwater recharge (GR) is pivotal for numer-
ous reasons, such as sustainable management of water resources
and mitigation of groundwater contamination (Böhlke, 2002;
Scanlon et al., 2006; Gleeson et al., 2012). However, owing to the
highly nonlinear nature of the process, GR may vary significantly
over space and time (Small, 2005; Scanlon et al., 2006). As such,
accurate estimation of GR still remains one of the most challenging
tasks in the field of hydrology (De Vries and Simmers, 2002;
National Research Council, 2004). Over the past several decades,
a range of techniques have been developed to quantify GR with
various degrees of success (c.f., Allison et al., 1994; Scanlon et al.,
2002). Although previous studies indicated that tracer approaches
might provide the most reliable GR estimates (Allison et al., 1994;
De Vries and Simmers, 2002), the use of process-based vadose zone
models (VZMs) has recently attracted more attention, largely due
to the time and cost effectiveness of this method for quantifying
GR (Small, 2005; Jiménez-Martínez et al., 2009; Carrera-
Hernández et al., 2012; Min et al., 2015; Ries et al., 2015;
Turkeltaub et al., 2015).
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Compared to other methods, the use of VZMs demands compli-
cated model parameterizations, particularly the soil hydraulic
parameters (SHPs) inputs that are generally unavailable. To resolve
this issue, pedotransfer functions (PTFs), which convert readily
available or easily measurable soil properties (e.g., soil texture,
particle size distribution, and bulk density) to SHPs (Schaap
et al., 2001; Wösten et al., 2001), have been routinely used along
with VZMs for quantifying GR at regional scales (e.g., Keese et al.,
2005; Nolan et al., 2007). In spite of the advantages, the reliability
of such a method for computing GR is greatly constrained by the
uncertainties associated with PTFs, particularly in semiarid regions
(Faust et al., 2006; Wang et al., 2009a, 2015a). Therefore, it is nec-
essary to seek new approaches to estimating SHPs for computing
GR, and inverse modeling to infer SHPs from observed soil moisture
and/or matric potential data is such an approach (see the reviews
by Hopmans and Simunek (1999) and Vrugt et al. (2008)).
Recently, studies tested the practical viability of inverse vadose
zone modeling for estimating GR under different soil, vegetation,
and hydroclimatic conditions (Jiménez-Martínez et al., 2009; Lu
et al., 2011; Andreasen et al., 2013; Min et al., 2015; Ries et al.,
2015; Turkeltaub et al., 2015). By calibrating a VZM to soil
moisture data in an agricultural field, Jiménez-Martínez et al.
(2009) concluded that the approach of inverse modeling was
promising for providing reliable GR estimates in semiarid regions.
Andreasen et al. (2013) calibrated a 1-D soil–plant–atmosphere
model using soil moisture data within a small watershed, and also
reached the conclusion that inverse modeling could offer reliable
GR estimates. Min et al. (2015) showed that GR estimated from
inverse modeling was comparable to the one obtained from the
chloride mass balance method.

Despite previous efforts, earlier inverse modeling studies
mostly focused on quantifying local-scale GR (e.g., at one location);
however, GRmay spatially vary depending on local soil, vegetation,
and hydroclimatic conditions (Keese et al., 2005; Small, 2005;
Wang et al., 2015a). Thus, from the perspective of water resources
management, it is more valuable to provide spatial information on
GR at much larger spatial scales. With rapid developments in
sensor technology for measuring soil moisture, soil moisture data
have become increasingly accessible from large-scale distributed
Fig. 1. Location map of soil moisture stations from the Autom
monitoring networks (>104 km2; see Crow et al. (2012) and
Ochsner et al. (2013) for the lists of large-scale soil moisture mon-
itoring networks around the globe). Although those soil moisture
monitoring networks were originally deployed for other purposes
(e.g., monitoring droughts and validating remotely sensed data),
they may provide additional societal benefits of estimating spatial
distributions of GR at low costs (e.g., without additional field work
and installing new equipment); however, its feasibility warrants
further investigation, which is the primary motivation of this work.

The primary goal of this study was threefold: (1) use a widely-
spread soil moisture monitoring network and an inverse modeling
technique to estimate the spatial distribution of GR in a semiarid
region, (2) compare the inverse modeling technique with other
methods for quantifying GR, and (3) assess soil and climatic con-
trols on GR. To ensure the generality of this study, a standard pro-
cedure was proposed to parameterize a widely used VZM. This
procedure utilized publicly available data and literature values.
For calibrating the VZM, long-term daily soil moisture data (i.e.,
6 years) were retrieved from the Automated Weather Data Net-
work (AWDN) across Nebraska, USA. It should be stressed here that
due to the uncertainties associated with each technique for esti-
mating GR, it is critical to compare GR results from multiple meth-
ods (Scanlon et al., 2002). Thus, GR estimated from a number of
techniques in the study area was used to cross-validate the inverse
modeling results. With the aid of existing soil moisture monitoring
networks, this study has important implications for aiding water
resources management in different regions around the globe.
2. Materials and methods

2.1. Study area and soil moisture data

The study area covers the state of Nebraska with an area of
approximately 2.0 � 105 km2 (Fig. 1). The climate in the region is
characterized as a continental semiarid type. Fromwestern to east-
ern Nebraska, mean annual precipitation increases from about
35 cm/year to over 75 cm/year (the mean annual precipitation
map can be accessed at http://www.hprcc.unl.edu/index.php).
ated Weather Data Network (AWDN) across Nebraska.

http://www.hprcc.unl.edu/index.php
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The land surface is primarily covered by natural grasses and culti-
vated crops (Istanbulluoglu et al., 2012). Within the Nebraska
Sandhills (Fig. 1), sandy soils are dominant, while finer-textured
soils, such as loam and silt loam, are found outside the Nebraska
Sandhills (Istanbulluoglu et al., 2012). The infiltration rate across
Nebraska varies between� 2 cm/day and � 790 cm/day (data were
retrieved from the State Soil Geographic (STATSGO) dataset at
http://www.soilinfo.psu.edu/index.cgi?index.html). In addition,
field studies showed that saturated hydraulic conductivities varied
from about 110 cm/day to slightly over 2000 cm/day in the eastern
Nebraska Sandhills (Wang et al., 2008, 2015d). The sediments
across Nebraska are mainly comprised of eolian deposits with sand
deposits in the Nebraska Sandhills and loess deposits in central and
eastern Nebraska (Mason, 2001; Miao et al., 2007). The thickness of
the vadose zone shows significant spatial variations across the
region. The depth to water table ranges from several meters to tens
of meters at the study sites (see supplemental Table 1S for detailed
information). The High Plains Aquifer that primarily consists of
sand, gravel, and sandstone underlies about 84% of Nebraska, while
local paleovalley, glacial, and recent alluvial aquifers are mainly
found in eastern Nebraska (Korus et al., 2013). The average thick-
ness of the High Plains Aquifer in the Nebraska Sandhills is about
182 m, while the thickness of the High Plains Aquifer varies
between 30 m and 122 m outside the Nebraska Sandhills. From a
hydrological perspective, Nebraska occupies an important place
in the water budget of the Great Plains, as the largest portion of
groundwater storage in the High Plains Aquifer is found
underneath Nebraska’s borders with an estimated volume of
Table 1
Statistical summary of annual precipitation (P) and potential evapotranspiration (ETp) at t

AWDN station Latitude Longitude P (cm/year)

Mean Ra

Alliance North 42.18 �102.92 34.49 13
Arthur 41.65 �101.52 44.12 14
Barta 42.23 �99.65 52.44 25
Beatrice 40.30 �96.93 63.11 42
Brule 41.09 �101.59 43.62 14
Brunswick 42.35 �97.92 59.64 27
Cedar Point 41.20 �101.63 41.05 16
Central City 41.15 �97.97 56.68 24
Clay Center 40.57 �98.13 64.43 48
Concord 42.38 �96.95 69.68 49
Cozad 40.97 �99.95 52.49 20
Curtisunsta 40.63 �100.50 47.98 25
Elgin 41.93 �98.18 61.53 34
Gothenburg 40.95 �100.18 51.78 19
Grand Island 40.88 �98.50 51.95 23
Halsey 41.90 �100.15 52.76 28
Higgins Ranch 42.83 �99.25 54.81 35
Holdrege 40.33 �99.37 55.82 32
Holdrege 4n 40.50 �99.35 60.28 34
Kearney 40.72 �99.02 53.75 28
McCook 40.23 �100.58 48.85 29
Mead 41.15 �96.48 67.20 44
Meadagro Farm 41.15 �96.40 65.90 42
Merna 41.45 �99.77 54.46 22
Merritt 42.45 �100.90 48.18 26
Minden 40.52 �99.05 59.09 32
Mitchell Farms 41.93 �103.70 30.62 11
Nebraska City 40.53 �95.80 61.45 46
Newport 42.58 �99.38 57.77 31
North Platte 41.08 �100.77 45.07 18
Red Cloud 40.08 �98.28 58.20 38
Sidney 41.22 �103.02 39.20 21
Smithfield 40.58 �99.67 58.64 30
York 40.87 �97.62 57.89 36
2.438 � 103 km3 or about 68% of the total storage of the High Plains
Aquifer (Scanlon et al., 2012). In addition, the Nebraska Sandhills is
the largest native grassland-stabilized sand dune area in the
Western Hemisphere (Loope and Swinehart, 2000). The high infil-
tration capacity of sandy soils makes this area an important
recharge area for the underlying High Plains Aquifer (Szilagyi
et al., 2003, 2011; Wang et al., 2009b; Scanlon et al., 2012). Partly
owing to the importance of groundwater resources for agricultural
irrigation in Nebraska (Wen and Chen, 2006), it is critical to under-
stand the naturally occurring GR across the region for assessing the
sustainability of water resources.

In order to use inverse modeling for estimating GR, daily soil
moisture data at four depths (i.e., 10, 25, 50, and 100 cm) were
retrieved from the AWDN stations across Nebraska, which are
operated by the High Plains Regional Climate Center at the Univer-
sity of Nebraska. In this study, a total of 34 AWDN stations were
selected with daily soil moisture data spanning from 2008 to
2013 (Fig. 1 and Table 1). Those AWDN sites are covered by natural
grasses under rainfed conditions with gentle slopes. Hourly soil
moisture at the AWDN sites is measured using Theta probes
(ML2x sensors, Delta-T Devices, Cambridge, UK) that were cali-
brated at each site (Hubbard et al., 2009). The hourly moisture data
were then integrated to daily values and used in this study. At each
AWDN site, hydrometeorological data were also recorded, includ-
ing precipitation (P), air temperature, radiation, relative humidity,
and wind speed. Daily potential evapotranspiration (ETp) was cal-
culated based on the Penman–Monteith equation (Allen et al.,
1998), which was then used along with daily P to drive the VZM.
he AWDN stations during the study period from 2000 to 2013.

ETp (cm/year)

nge (standard deviation) Mean Range (standard deviation)

.28–54.87 (10.37) 131.64 115.84–155.35 (11.30)

.63–67.32 (13.68) 130.14 111.61–163.21 (12.98)

.77–70.09 (12.10) 127.15 106.96–157.73 (12.74)

.43–106.95 (16.81) 115.41 104.22–137.59 (9.84)

.86–63.61 (11.44) 133.09 120.26–176.78 (14.37)

.98–86.42 (13.59) 101.56 86.44–127.16 (9.99)

.90–57.77 (12.21) 125.62 108.01–153.38 (12.06)

.58–99.80 (17.92) 105.84 91.27–123.48 (10.42)

.36–90.57 (13.21) 111.81 100.84–134.20 (9.12)

.44–106.17 (16.85) 105.80 92.21–133.68 (10.16)

.83–74.44 (14.58) 109.95 97.77–137.37 (13.16)

.18–76.08 (14.05) 128.52 107.76–153.37 (13.26)

.08–90.43 (16.14) 113.18 96.97–138.75 (11.16)

.70–86.95 (17.42) 123.84 106.13–155.84 (12.35)

.34–80.41 (15.24) 114.83 101.82–139.37 (10.08)

.16–82.03 (13.91) 130.90 111.66–154.05 (11.58)

.76–78.92 (12.54) 121.38 102.61–154.15 (14.17)

.46–75.30 (13.85) 126.31 110.52–149.49 (11.50)

.90–87.46 (14.99) 119.30 102.93–141.14 (11.16)

.97–82.80 (15.76) 122.92 107.34–148.72 (10.44)

.58–65.34 (12.14) 134.20 113.98–157.88 (13.21)

.04–98.02 (14.76) 108.08 93.61–132.25 (9.87)

.63–93.11 (13.96) 103.95 92.24–123.82 (8.78)

.99–83.71 (17.49) 113.30 94.18–142.57 (12.10)

.97–61.66 (10.83) 125.65 112.09–156.66 (13.36)

.10–85.05 (15.84) 115.91 102.05–134.21 (10.58)

.65–44.01 (9.33) 132.15 118.15–158.96 (10.59)

.18–96.36 (12.90) 105.75 93.36–127.19 (10.05)

.76–78.92 (13.51) 116.05 103.05–146.94 (11.48)

.51–62.16 (14.66) 113.69 98.29–131.20 (9.45)

.86–86.17 (13.28) 122.89 108.76–145.75 (10.38)

.59–56.30 (11.51) 143.87 123.12–170.04 (13.38)

.69–81.88 (14.16) 121.88 105.94–146.86 (11.65)

.95–81.50 (11.86) 107.34 98.08–126.27 (7.92)

http://www.soilinfo.psu.edu/index.cgi?index.html


Table 2
Bounds of the van Genuchten parameters used for inverse calculations.

hr (–) hs (–) a (1/cm) n (–) KS (cm/day) l (–)

Range 0–0.1 0.3–0.5 0.001–0.2 1.1–4.0 1–2000 �1 to 1
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2.2. Model setup and parameterization

The Hydrus-1D model (Šimunek et al., 2013) was adopted for
computing GR, which is based on the Richards equation for simu-
lating soil moisture dynamics in vadose zones with reasonable
accuracy (Zlotnik et al., 2007). At the surface of the modeled soil
columns, an atmospheric boundary condition was selected, which
could switch from a prescribed flux to a prescribed pressure head
when limiting pressure heads were exceeded. Surface runoff was
allowed without ponding when the intensity of P was higher than
soil infiltration capacity or soil became saturated. A free drainage
condition was set at the lower boundary. Based on the depth to
water table across the study area (Table 1S), the length of the mod-
eled soil columns was 1.5 m with a total of 151 nodes at 1-cm
intervals. In this study, naturally occurring GR was defined as the
amount of water that passed the lower boundary. Vegetated sur-
face conditions were simulated, which required separate inputs
of potential evaporation (Ep) and potential transpiration (Tp). To
partition ETp into Ep and Tp, Beer’s law was used:

EpðtÞ ¼ ETpðtÞ � e�k�LAIðtÞ ð1Þ

TpðtÞ ¼ ETpðtÞ � EpðtÞ ð2Þ
where k is an extinction coefficient with its value set to be 0.5 and
LAI is leaf area index [L2/L2]. The model of Feddes et al. (1978) was
adopted to compute root water uptake S(h):

SðhÞ ¼ aðhÞ � Sp ð3Þ
where a(h) [–] is a dimensionless function and varies between 0 and
1 depending on soil matric potentials, and Sp [1/T] is the potential
root water uptake and assumed to be equal to Tp. The distribution
of Sp over the root zone was based on root density distributions.
The root water uptake was then assumed to be equal to actual tran-
spiration, and the actual evapotranspiration (ETa) was the sum of
actual soil evaporation and actual transpiration.

To ensure the generality of this study, publicly available data
and literature values were used to parameterize the Hydrus-1D
model. To partition daily ETp into Ep and Tp (i.e., Eqs. (1) and (2)),
LAI data at each AWDN site were obtained from the MODIS_
MOD15A2 dataset with a spatial resolution of 1 km and a temporal
resolution of 8 days (Myneni et al., 2002). Following the procedure
of Wang and Zlotnik (2012), a 3 � 3 cell window (i.e., 3 � 3 km)
centered at an AWDN location was used to extract LAI data from
the MODIS_MOD15A2 dataset. Average LAI values were first calcu-
lated from the 3 � 3 cell window and then used to obtain daily LAI
values by linearly interpolating those data. Given that the AWDN
sites are covered by natural grasses, the root density distribution
was assumed to follow the model in Jackson et al. (1996) for
grasses:

YðdÞ ¼ 1� bd ð4Þ
where Y [–] is the cumulative root fraction and varies between 0
and 1, d [L] is the soil depth in cm, and b is an extinction coefficient
with its value of 0.943 for temperate grasslands (Jackson et al.,
1996). In addition, the parameter values for delineating root water
uptake (i.e., a(h)) were taken from the default values for grasses
given in the Hydrus-1D model.

2.3. Inverse modeling

For the soil hydraulic functions, the van Genuchten model
(Mualem, 1976; van Genuchten, 1980) was adopted:

hðhÞ ¼ hr þ hs�hr
ð1þjahjnÞm ; h < 0

hs; h P 0

(
ð5Þ
KðSeÞ ¼ KS � Sle � 1� 1� S1=me

� �mh i2
ð6Þ

where h [L3/L3] is volumetric moisture content; h [L] is pressure
head; hr [L3/L3] and hs [L3/L3] are residual and saturated moisture
content, respectively; K [L/T] and KS [L/T] are unsaturated and satu-
rated hydraulic conductivity, respectively; and Se = (h � hr)/(hs � hr)
[–] is saturation degree. For the fitting factors, a [1/L] is inversely
related to air entry pressure, n [–] measures the pore size distribu-
tion of a soil with m = 1 � 1/n, and l [–] is a parameter accounting
for pore tortuosity and connectivity.

The inversion algorithm implemented in the Hydrus-1D model
was used to optimize the van Genuchten parameters listed in Eqs.
(5) and (6). Given the availability of soil moisture data at the AWDN
sites, the modeled soil columns were divided into four layers
(i.e., 0–17.5 cm, 17.5–37.5 cm, 37.5–75.0 cm, and 75.0–150.0 cm),
which led to a total of 24 hydraulic parameters. However, the max-
imum number of parameters that can be optimized by the Hydrus-
1D model is 15. Therefore, the optimization procedure used by
Turkeltaub et al. (2015) was adopted here. Specifically, the param-
eters of the upper two layers were first optimized, while the param-
eters of the remaining lower two layers were fixed. Then, the
optimized parameters of the upper two layers were fixed and the
parameters of the lower two layers were optimized. This procedure
was repeated until there were no further improvements in the opti-
mized parameters or the changes in the lowest sum of squares were
less than 0.1%. The parameter bounds used for the optimizations are
given in Table 2. Note that for hr, the upper bound was reduced to
the lowest observed value when it was less than 0.1. The Mar-
quardt–Levenberg nonlinear minimization method employed by
the Hydrus-1D model is sensitive to the initial values of the van
Genuchten parameters. To resolve this issue, two soil datasets were
used to initialize the van Genuchten parameters. First, soil particle
size distributions at AWDN sites were retrieved from the global soil
database of Shangguan et al. (2014). It was then converted to the
van Genuchten parameters using the Rosetta program (Schaap
et al., 2001). For the second soil dataset, the van Genuchten param-
eter values given by Carsel and Parrish (1988) were also adopted as
initial values. Based on the regional soil map of Nebraska
(Istanbulluoglu et al., 2012), a total of 6 soil textures were consid-
ered at each AWDN site, including sand, loamy sand, sandy loam,
loam, silt loam, and silt, and the van Genuchten parameter values
for those soil textures (Carsel and Parrish, 1988) were then used
as initial values.

For all optimizations, the initial soil moisture profile at each
AWDN site was set to the observed moisture data on January 1,
2008. A period of one year (i.e., the year of 2008) was used as a
spin-up period to minimize the effect of initial conditions. The cal-
ibration and validation periods were from 2009 to 2011 and 2012
to 2013, respectively. For the goodness-of-fit assessment, three
performance criteria were selected to evaluate the model results,
including Average Error (AE), Root Mean Square Error (RMSE),
and Nash–Sutcliffe Efficiency (NSE):

AE ¼
Pn

i¼1ðSi � OiÞ
n

ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðSi � OiÞ2

r
ð8Þ
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NSE ¼ 1�
Pn

i¼1ðSi � OiÞ2Pn
i¼1ðOi � OiÞ2

ð9Þ

where n is the total number of data points of soil moisture, and Si
and Oi are the simulated and observed daily soil moisture content
on day i, respectively. The NSE has been widely used to assess the
predictive power of hydrological models with its value of 1 indicat-
ing a perfect match between modeled and observed data (Nash and
Sutcliffe, 1970). In order to cross-validate GR estimates using auxil-
iary datasets, after the optimizations, GR was recalculated at each
AWDN site from 2001 to 2013 with the year of 2000 as the spin-
up period, based on the optimized parameter set of the highest
NSE score.
Fig. 2. Dependence of mean annual precipitation (P) and mean annual potential
evapotranspiration (ETp) on longitudes at AWDN sites. Data from 2000 to 2013
were used to calculate P and ETp , and vertical bars represent one standard
deviation.
3. Results and discussion

3.1. Hydroclimatic conditions

An overview of the hydroclimatic conditions across the study
area is given as a statistical summary of annual P and ETp at each
AWDN site in Table 1. Fig. 2 illustrates the longitudinal depen-
dence of mean annual P (P; overbars denote mean annual values
hereafter) and ETp across Nebraska. Fig. 2 reveals the existence of
a strong P gradient across the study area, increasing from
30.62 cm/year at Mitchell Farms in western Nebraska to
69.68 cm/year at Concord in eastern Nebraska. In contrast, ETp

showed an opposite spatial trend, which decreased from
�140 cm/year in western Nebraska to �100 cm/year in eastern
Nebraska. On annual time scales, there also existed significant
interannual variability in P at all the AWDN sites. During the study
period from 2000 to 2013, annual P at the AWDN sites (except for
at Clay Center) varied by a factor greater than 2. By comparison, the
interannual variability in ETp was still significant, but to a lesser
degree. In addition, with increasing P and ETp, the variability in
annual P and ETp also increased, as indicated by the standard devi-
ations shown in Fig. 2. Partly due to the significant variability in P
and ETp, GR exhibited considerable spatial variations across
Nebraska (Szilagyi and Jozsa, 2013), making the study area ideal
for assessing the feasibility of using inverse vadose zone modeling
for estimating GR from large-scale soil moisture monitoring
networks.

3.2. Temporal evolution of soil moisture

Due to the large number of the AWDN sites, only the mean (�h)
and standard deviation (rh) of daily soil moisture contents, which
were derived from the soil moisture data of all the AWDN sites, are
plotted in Fig. 3. The seasonality of the observed �h was obvious at
all the depths. With decreasing depths, the temporal dynamics of �h
also became stronger, mostly because of the tighter coupling
between soil moisture and land surface processes at shallower soil
depths (Martinez-Fernandez and Ceballos, 2003; Guber et al.,
2008; Wang et al., 2015b). More importantly, rh in Fig. 3 reveals
that soil moisture varied considerably across the AWDN sites. In
addition to the effects of climatic conditions, soil moisture levels
were largely controlled by soil properties at the study sites
(Mahmood et al., 2012; Wang et al., 2015c). For example,
Mahmood et al. (2012) analyzed soil moisture data from AWDN
stations from eastern to western Nebraska and found that sandy
soils generally had lower soil moisture levels than silty soils.

As another demonstration, observed daily soil moisture con-
tents from Mitchell Farms, Barta, and Concord with similar lati-
tudes are plotted in Figs. 4, 5 and 6, respectively. Barta resides
within the Nebraska Sandhills with the dominant soil texture of
sand, while Mitchell Farms and Concord are located outside the
Nebraska Sandhills with finer-textured soils (Fig. 1). Despite the
much drier climatic conditions at Mitchell Farms (P ¼ 30:62 cm/
year and ETp ¼ 132:15 cm/year), soil moisture levels at Barta
(P ¼ 52:44 cm/year and ETp ¼ 127:15 cm/year) were consistently
lower, due to less water holding capacities of sandy soils. With
the wettest climate (P ¼ 69:68 cm/year and ETp ¼ 105:80 cm/year)
and finer soils at Concord, soil moisture levels were considerably
higher than the ones at the other two sites.
3.3. Results from inverse modeling

Daily soil moisture data from 2009 to 2011 and from 2012 to
2013 were used for calibration and validation, respectively. Note
that compared with previous studies (e.g., Jiménez-Martínez
et al., 2009; Lu et al., 2011; Min et al., 2015; Ries et al., 2015;
Turkeltaub et al., 2015), the time series of soil moisture data used
for calibration and validation were noticeably longer in this study.
Both wet (e.g., 2011) and dry (e.g., 2012) years were encountered
during the simulation period (Figs. 4–6). For the goodness-of-fit
assessment, the resulting values of AE, RMSE, and NSE are reported
in Table 3 for the calibration period and in Table 4 for the valida-
tion period.

It is important to notice that even though no detailed informa-
tion on local conditions was utilized to parameterize the Hydrus-
1D model, the obtained RMSE values during the calibration period
fell within the general ranges of RMSE reported by previous studies
(e.g., Jiménez-Martínez et al., 2009; Assefa and Woodbury, 2013;
Min et al., 2015). These results demonstrated the applicability of
the procedure used for model parameterizations in the study area.
In particular, with decreasing depths, the RMSE values tended to be
smaller, most likely due to the less temporal variations in soil
moisture at deeper soil depths (Fig. 3). The values of AE during
the calibration period were generally close to zero, indicating that
the simulated long-term soil water storage matched well with the
observed ones. More interestingly, compared to AE and RMSE, the
differences in the NSE values were more contrasting among
the sites, suggesting that the use of NSE might be better for evalu-
ating model performances; however, this topic is beyond the scope
of this study but deserves further investigation. The model perfor-
mances were less successful during the validation period, probably
due to the record drought conditions in 2012. For instance, the for-
mations of soil crusts under extreme drought conditions might
alter the infiltration and evaporation processes (Abu-Awwad,



Fig. 3. Temporal evolutions of daily soil moisture contents at different soil depths. The black lines represent daily mean soil moisture contents calculated from all AWDN
stations and the gray areas indicate one standard deviation.
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1997; Al-Kaisi et al., 2013), as indicated by the larger deteriora-
tions of the model performances during the validation period at
the AWDN sites with drier climatic conditions and finer-textured
soils.

Examples of observed and simulated daily soil moisture con-
tents along with daily meteorological data are plotted in Figs. 4–6
for Mitchell Farms, Barta, and Concord with different climatic
and soil conditions. For the purpose of brevity, only the optimized
van Genuchten parameters for the above three sites are reported in
Table 5 (the rest of the optimized parameters can be found in the
supplemental Table 2S) along with the sand percent from
Shangguan et al. (2014). For the optimized KS, it tended to increase
with increasing sand percent. For instance, the optimized KS was
generally higher at Barta, which was also consistent with field
measurements of KS at Barta (Wang et al., 2015d); whereas, the
optimized KS was lowest at Concord. As expected, with increasing
annual P (i.e., from Mitchell Farms, Barta to Concord), soil moisture
showed stronger temporal dynamics, due to the larger number of
precipitation events. Overall, the simulated soil moisture contents
corresponded well with the inputs of P, and were able to capture
most of the observed soil moisture peaks as well as drainage pro-
cesses. However, some of the observed soil moisture peaks were
missed by the simulations (e.g., in September and October 2010
at Mitchell Farms, and April 2009 at Concord), because of the insuf-
ficient model inputs of P (see Figs. 4 and 6). Although the reasons
for the mismatches between the recorded P (i.e., model inputs)



Fig. 4. Daily precipitation (P) and potential evapotranspiration (EPp), and observed and simulated soil moisture contents during the calibration (2009–2011) and validation
(2012–2013) periods at Mitchell Farms.
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and the observed soil moisture contents were unknown, it would
clearly cause the deviations of the simulated soil moisture contents
from the observed ones.
In addition to the uncertainties in the observed soil moisture
data and/or model inputs, other reasons might also contribute to
the deviations between observed and simulated soil moisture



Fig. 5. Daily precipitation (P) and potential evapotranspiration (EPp), and observed and simulated soil moisture contents during the calibration (2009–2011) and validation
(2012–2013) periods at Barta.
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contents (e.g., macropore flow, lateral flux of soil moisture, and
shallow groundwater), which were not considered in this study.
For instance, previous studies showed that shallow groundwater
could affect soil moisture dynamics, land surface processes, and
groundwater recharge (Maxwell and Kollet, 2008; Wang et al.,
2009a; Soylu et al., 2011; Brunner et al., 2012). In particular,



Fig. 6. Daily precipitation (P) and potential evapotranspiration (EPp), and observed and simulated soil moisture contents during the calibration (2009–2011) and validation
(2012–2013) periods at Concord.
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Brunner et al. (2012) pointed out that the use of soil moisture
data for calibrating groundwater and vadose zone models was
heavily dependent on the depth to water table. There were no
groundwater level measurements made at the AWDN sites. To
resolve this issue, data on the average depth to water table
from 2008 to 2013 were obtained from nearby observational



Table 3
Goodness-of-fit measures for simulated and observed soil moisture data at different depths during the calibration period from 2009 to 2011.

AWDN station Average Error (AE) Root Mean Square Error (RMSE) Nash–Sutcliffe Efficiency (NSE)

10 cm 25 cm 50 cm 100 cm 10 cm 25 cm 50 cm 100 cm 10 cm 25 cm 50 cm 100 cm

Alliance North �0.001 0.001 �0.004 �0.005 0.053 0.047 0.057 0.021 0.309 0.347 0.244 0.284
Arthur 0.001 0.000 0.000 0.000 0.032 0.026 0.033 0.014 0.327 0.449 0.413 0.341
Barta �0.001 0.000 0.000 �0.001 0.021 0.018 0.015 0.023 0.047 0.165 0.092 0.254
Beatrice �0.002 �0.001 �0.004 �0.001 0.071 0.050 0.064 0.022 0.191 0.337 0.360 0.381
Brule �0.003 �0.001 0.000 0.001 0.066 0.047 0.029 0.025 0.323 0.289 0.453 0.495
Brunswick 0.000 0.000 0.000 �0.002 0.058 0.043 0.033 0.030 0.231 0.435 0.643 0.351
Cedar Point 0.000 �0.001 �0.001 0.000 0.044 0.033 0.038 0.012 0.322 0.535 0.400 0.359
Central City �0.001 �0.002 �0.001 0.000 0.057 0.035 0.026 0.056 0.467 0.587 0.470 0.169
Clay Center �0.005 �0.004 0.000 0.002 0.062 0.068 0.095 0.038 0.154 0.424 0.258 0.289
Concord �0.003 �0.002 0.000 0.000 0.064 0.050 0.036 0.023 0.219 0.302 0.465 0.497
Cozad 0.000 �0.001 �0.008 �0.015 0.077 0.047 0.051 0.023 0.267 0.464 0.529 �0.007
Curtisunsta �0.005 �0.021 �0.033 �0.031 0.049 0.060 0.057 0.040 0.348 0.401 �0.059 �1.440
Elgin 0.000 0.000 0.001 0.000 0.037 0.029 0.041 0.020 0.338 0.374 0.205 0.443
Gothenburg �0.001 0.000 0.000 0.000 0.024 0.016 0.019 0.038 0.101 0.237 0.451 0.426
Grand Island 0.000 0.000 �0.001 0.000 0.057 0.046 0.023 0.015 0.267 0.231 0.427 �0.102
Halsey 0.000 0.000 0.000 0.000 0.026 0.024 0.016 0.018 0.214 0.304 0.289 0.068
Higgins Ranch 0.000 0.000 0.000 0.000 0.024 0.017 0.012 0.007 0.193 0.307 0.352 0.416
Holdrege 0.000 0.001 �0.005 �0.002 0.059 0.040 0.052 0.034 0.172 0.471 0.410 0.127
Holdrege 4n �0.001 0.000 0.000 �0.001 0.039 0.029 0.045 0.046 0.339 0.452 0.392 0.274
Kearney 0.000 0.001 �0.001 0.000 0.046 0.033 0.036 0.025 0.330 0.575 0.715 0.206
McCook 0.000 �0.001 0.000 �0.002 0.047 0.037 0.041 0.014 0.308 0.397 0.399 0.344
Mead 0.002 0.003 �0.001 0.000 0.051 0.032 0.033 0.024 0.186 0.322 0.194 0.245
Meadagro Farm 0.000 0.000 0.000 �0.001 0.052 0.037 0.045 0.019 0.240 0.361 0.347 0.308
Merna 0.001 0.001 0.001 �0.001 0.038 0.039 0.039 0.013 0.385 0.419 0.047 0.059
Merritt 0.000 0.000 0.000 0.000 0.039 0.029 0.017 0.018 0.209 0.372 0.472 0.426
Minden 0.000 �0.001 0.000 �0.001 0.065 0.062 0.046 0.040 0.033 0.203 0.267 0.090
Mitchell Farms 0.000 0.000 0.000 0.001 0.042 0.038 0.030 0.015 0.274 0.262 0.372 0.711
Nebraska City �0.001 0.000 0.000 �0.001 0.072 0.067 0.077 0.025 0.033 0.064 �0.017 �0.166
Newport �0.003 �0.001 0.004 0.000 0.025 0.026 0.057 0.011 0.590 0.708 0.309 �0.088
North Platte 0.000 0.000 0.001 �0.001 0.041 0.035 0.042 0.029 0.382 0.651 0.526 0.075
Red Cloud �0.001 �0.004 �0.001 0.000 0.063 0.068 0.043 0.042 0.247 0.468 0.447 0.308
Sidney 0.000 �0.001 0.000 0.000 0.047 0.034 0.037 0.009 0.498 0.685 0.367 0.679
Smithfield 0.000 �0.001 �0.001 �0.001 0.058 0.037 0.018 0.013 0.248 0.562 0.680 0.556
York 0.000 0.000 0.000 0.000 0.048 0.043 0.008 0.007 0.201 0.369 0.323 �0.683
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groundwater wells operated by the USGS Active Groundwater
Level Network (http://groundwaterwatch.usgs.gov/default.asp;
see supplemental Table 1S for detailed information). Although
the depth to water table was deeper than 1.5 m at all the sites,
water table could approach the depth of the lower boundary of
the model (i.e., 1.5 m) at some locations. For example, the average
depth to water table was 2.4 m at Nebraska City. It could explain
the poorer model performance at Nebraska City (Table 3), indicat-
ing that the free drainage lower boundary condition might not be
valid at this site. Nevertheless, with only the aid of publicly avail-
able data and literature values for parameterizing the Hydrus-1D
model, the inverse modeling results of this study were generally
comparable to the ones of previous studies.

3.4. Comparisons of GR and ETa estimates from inverse modeling with
other techniques

The calibrated models were used to compute GR from 2001 to
2013 at each AWDN site with the year of 2000 as the spin-up per-
iod. The summary of the resulting GR and ETa values are given in
Table 6. The obtained GR values varied by over three orders of mag-
nitude, ranging from <0.01 cm/year at Mitchell Farms to 16.13 cm/
year at Higgins Ranch. In addition, significant interannual variabil-
ity in GR also existed at each AWDN site, mainly due to the varia-
tions in annual P and ETp. Similar observations can be also made for
ETa with ETa varying from 29.65 cm/year at Mitchell Farms to
60.54 cm/year at Beatrice. The spatial variations in GR and ETa
across the sites reflected the differences in local climatic, soil,
and vegetation conditions. As pointed out by Scanlon et al.
(2002), uncertainties exist for all the available techniques for
estimating GR. It is thus crucial to evaluate the reliability of GR
estimates using multiple techniques. In the following sections,
the estimates of GR and ETa from the simulations are compared
to the results obtained from other techniques, including remotely
sensed data, tracer-based approaches, and regional water balance
methods.
3.4.1. Comparisons with remotely sensed data
Although ETa is usually the larger water balance component

than GR in hydrological cycles, the majority of previous studies
only tested model results using observed soil moisture data and/
or GR estimated from other techniques. Only a few studies
attempted to verify model results with measured ETa (Andreasen
et al., 2013; Min et al., 2015), owing to the high costs associated
with direct measurements of ETa (e.g., lysimeter, eddy covariance,
and Bowen ratio methods). Meanwhile, the use of remotely sensed
products for various hydrological applications has drawn growing
interests from different scientific communities (Becker, 2006;
Kerr, 2007; Kalma et al., 2008). Based on MODIS and global mete-
orological data, Mu et al. (2007) developed a global terrestrial
evapotranspiration dataset, which was later improved by Mu
et al. (2011) (i.e., MODIS_MOD16). The MODIS_MOD16 dataset
provides ETa estimates at a spatial resolution of 1 km and a tempo-
ral resolution of 8 days. The same procedure for extracting the
MODIS LAI data was used to retrieve ETa from the MODIS_MOD16
dataset at each AWDN site. Fig. 7 compares ETa obtained from the
MODIS_MOD16 dataset (denoted as ETa-MODIS) and ETa calcu-
lated by the calibrated models (denoted as ETa-Hydrus) during
the period from 2001 to 2013. It can be seen from Fig. 7 that
ETa-MODIS tended to be smaller than ETa-Hydrus. On average,
the difference between ETa-Hydrus and ETa-MODIS was 3.78 cm/year

http://groundwaterwatch.usgs.gov/default.asp


Table 4
Goodness-of-fit measures for simulated and observed soil moisture data at different depths during the validation period from 2012 to 2013.

AWDN station Average Error (AE) Root Mean Square Error (RMSE) Nash–Sutcliffe Efficiency (NSE)

10 cm 25 cm 50 cm 100 cm 10 cm 25 cm 50 cm 100 cm 10 cm 25 cm 50 cm 100 cm

Alliance North 0.008 0.008 0.007 �0.019 0.044 0.043 0.061 0.023 0.463 0.511 0.142 �3.018
Arthur 0.013 0.010 0.019 0.055 0.030 0.026 0.031 0.066 0.228 0.232 0.213 �2.072
Barta �0.003 0.001 0.010 0.009 0.019 0.016 0.018 0.027 0.180 0.368 0.017 0.247
Beatrice �0.009 �0.045 �0.048 �0.005 0.078 0.063 0.062 0.040 0.244 0.097 0.130 0.160
Brule 0.030 0.012 0.007 0.019 0.074 0.062 0.034 0.021 0.077 �0.004 �0.281 �1.855
Brunswick 0.002 �0.033 �0.013 0.068 0.047 0.047 0.031 0.079 0.390 0.259 0.456 �1.260
Cedar Point 0.023 0.021 0.028 0.010 0.051 0.039 0.036 0.012 0.292 0.063 �0.281 �1.303
Central City 0.016 �0.007 0.019 0.013 0.054 0.042 0.037 0.053 0.476 0.652 0.458 �0.670
Clay Center 0.002 �0.014 0.018 0.018 0.067 0.078 0.093 0.037 0.115 0.170 0.117 �0.004
Concord 0.002 0.003 0.029 0.045 0.047 0.041 0.050 0.051 0.390 0.538 �0.200 �5.383
Cozad 0.022 0.002 �0.005 0.013 0.066 0.040 0.032 0.019 0.217 0.241 �0.022 0.018
Curtisunsta 0.014 0.015 0.000 0.026 0.060 0.060 0.041 0.030 0.369 0.413 �0.018 �2.348
Elgin �0.001 0.006 0.000 �0.024 0.033 0.030 0.029 0.038 0.524 0.319 �0.281 0.092
Gothenburg 0.000 �0.006 �0.002 0.054 0.023 0.017 0.018 0.060 0.375 0.585 0.754 �1.386
Grand Island 0.042 0.075 0.054 0.068 0.088 0.108 0.084 0.079 �0.406 �1.068 �0.666 �2.093
Halsey 0.004 0.017 0.008 0.009 0.025 0.030 0.023 0.023 0.383 0.037 0.157 �0.056
Higgins Ranch 0.017 0.007 0.009 0.001 0.025 0.021 0.020 0.012 �0.321 0.278 0.021 0.317
Holdrege 0.034 �0.002 0.061 0.064 0.073 0.051 0.111 0.076 �0.040 0.606 �0.055 �1.936
Holdrege 4n �0.022 0.002 0.020 0.032 0.045 0.028 0.049 0.043 0.182 0.558 0.228 �0.437
Kearney 0.001 �0.017 �0.030 0.037 0.045 0.043 0.058 0.043 0.461 0.507 0.384 �0.937
McCook 0.064 0.064 0.111 0.082 0.097 0.097 0.124 0.098 �0.613 �0.800 �3.706 �2.267
Mead 0.053 0.045 0.054 0.041 0.087 0.070 0.080 0.053 �0.126 0.083 �0.163 �0.648
Meadagro Farm �0.012 0.001 0.055 0.021 0.049 0.039 0.070 0.032 0.402 0.564 �0.304 �0.603
Merna 0.006 0.023 0.052 0.029 0.032 0.043 0.062 0.031 0.504 0.465 �0.964 �3.819
Merritt 0.002 0.001 �0.002 0.002 0.030 0.027 0.021 0.025 0.240 0.458 0.492 0.409
Minden 0.042 0.029 0.016 0.023 0.081 0.072 0.033 0.025 �0.321 �0.082 �0.311 �16.982
Mitchell Farms 0.000 0.013 0.028 0.014 0.024 0.025 0.035 0.025 0.509 0.327 �0.567 �1.432
Nebraska City 0.043 �0.032 �0.085 0.007 0.090 0.073 0.092 0.015 �0.179 0.062 �4.694 �0.608
Newport 0.024 0.012 0.059 0.061 0.033 0.024 0.073 0.082 �0.636 0.208 �1.077 �2.946
North Platte �0.003 �0.003 0.010 0.031 0.033 0.029 0.020 0.043 0.345 0.304 �1.393 �0.906
Red Cloud 0.008 0.002 0.032 0.021 0.076 0.053 0.045 0.031 0.083 0.346 �0.216 0.061
Sidney 0.000 0.001 �0.009 �0.002 0.041 0.028 0.022 0.012 0.531 0.748 0.644 �0.684
Smithfield 0.036 0.041 0.049 0.039 0.073 0.066 0.063 0.045 �0.064 �0.255 �4.540 �3.026
York �0.006 0.001 0.007 �0.001 0.051 0.053 0.019 0.007 0.132 0.220 0.050 �0.243

Table 5
Optimized van Genuchten parameters for Mitchell Farms, Barta, and Concord, and the sand percent at those sites from Shangguan et al. (2014).

AWDN site Depth (cm) hr (–) hs (–) a (1/cm) n (–) KS (cm/day) l (–) Sand (%)

Mitchell Farms 0–17.5 0.032 0.364 0.003 1.181 52.1 0.998 67
17.5–37.5 0.075 0.326 0.001 1.202 1972.0 0.573 60
37.5–75.0 0.099 0.337 0.001 1.236 2.4 0.978 25
75.0–150.0 0.087 0.331 0.157 1.120 2000.0 1.000 44

Barta 0–17.5 0.030 0.300 0.084 1.267 2000.0 0.000 87
17.5–37.5 0.022 0.300 0.017 1.467 2000.0 �0.001 89
37.5–75.0 0.061 0.300 0.031 1.326 2000.0 0.001 94
75.0–150.0 0.099 0.306 0.004 1.543 304.6 1.000 95

Concord 0–17.5 0.100 0.375 0.021 1.465 4.2 1.000 8
17.5–37.5 0.100 0.385 0.022 1.362 3.3 0.002 8
37.5–75.0 0.001 0.391 0.025 1.183 1.0 0.000 7
75.0–150.0 0.010 0.449 0.001 1.330 13.7 0.000 8
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for all the AWDN sites. At the majority of the AWDN sites, the dif-
ferences between ETa-Hydrus and ETa-MODIS were less than 20%.
By comparison, the measurement error of ETa ranges from 10% to
30% (Allen et al., 2011). A number of reasons could be attributed
to the discrepancy between ETa-Hydrus and ETa-MODIS, such as
the mismatch of the spatial scales between the two datasets, the
uncertainties in the model inputs and inverse modeling, and the
uncertainties in the MODIS ETa algorithm (Mu et al., 2011;
Trambauer et al., 2014). Nonetheless, for areas without direct mea-
surements of ETa or GR estimated from other techniques, the MOD-
IS_MOD16 dataset might provide additional information for cross-
validating the water balance components from model results.

Szilagyi et al. (2011) developed a net GR map for the Nebraska
Sandhills at the spatial resolution of 1 km, based on the residuals
between P (derived from the Parameter-elevation Regressions on
Independent Slopes Model-PRISM) and ETa (derived from linear
transformations of the MODIS daytime land-surface temperatures
and ancillary meteorological data). Szilagyi and Jozsa (2013)
extended their earlier work and mapped net GR for the entire state
of Nebraska. The net GR during the period from 2000 to 2009 was
retrieved from Szilagyi and Jozsa (2013) (denoted as GR-Szilagyi).
Fig. 8 shows the comparison between GR-Szilagyi and the simula-
tion results (denoted as GR-Hydrus). Note that GR from 2001 to
2009 was used to compute GR-Hydrus in Fig. 8. Negative values
of GR-Szilagyi in Fig. 8 occurred in western Nebraska. Due to the
use of the residual approach for calculating GR, Szilagyi and Jozsa
(2013) attributed those negative GR values primarily to irrigation



Table 6
Summary of calculated groundwater recharge (GR) and actual evapotranspiration (ETa) during the period from 2001 to 2013 from the calibrated models.

AWDN stations GRa (cm/year) rGR
b (cm/year) ETa (cm/year) rETa (cm/year) GR=P (%)

Alliance North 0.08 0.29 32.79 9.28 0.22
Arthur 11.26 6.50 32.74 8.37 25.27
Barta 7.04 5.99 44.72 8.20 13.41
Beatrice 4.30 5.98 60.54 9.19 6.74
Brule 0.42 0.28 42.55 8.68 0.99
Brunswick 2.22 2.29 58.37 9.55 3.68
Cedar Point 2.17 3.11 38.85 9.77 5.18
Central City 2.35 3.29 50.48 8.66 4.05
Clay Center 8.15 5.94 55.86 7.64 12.79
Concord 8.53 8.73 56.58 5.76 12.02
Cozad 1.53 1.09 47.80 11.06 2.89
Curtisunsta <0.01 <0.01 43.86 9.80 <0.1
Elgin 14.42 10.94 48.16 6.38 23.13
Gothenburg 8.29 9.53 43.80 9.26 15.95
Grand Island 0.03 0.09 47.27 11.29 0.05
Halsey 3.77 6.55 48.26 10.20 7.06
Higgins Ranch 16.13 7.11 39.01 6.58 29.06
Holdrege 4.26 3.10 46.15 8.18 7.58
Holdrege 4n 0.78 0.91 59.61 12.70 1.28
Kearney 0.48 0.48 51.39 9.38 0.89
Mccook 4.35 2.49 41.75 7.90 8.77
Mead 11.91 9.61 47.19 3.42 17.89
Meadagro Farm 2.31 3.45 54.67 5.29 3.41
Merna 10.89 10.78 43.50 10.06 20.00
Merritt 5.39 4.19 41.95 7.71 11.21
Minden 4.85 4.52 45.86 7.22 8.37
Mitchell Farms <0.01 <0.01 29.65 8.96 <0.1
Nebraska City 13.63 6.02 36.60 4.30 22.10
Newport 5.58 1.91 53.26 10.86 9.50
North Platte 3.30 2.67 40.19 11.16 7.25
Red Cloud 5.21 3.21 53.41 7.41 8.87
Sidney 1.89 2.22 36.64 9.03 4.77
Smithfield 8.65 6.24 49.95 8.09 14.52
York 7.75 3.84 45.31 6.41 13.23

a Overbar denotes mean annual values.
b r: standard deviation.

Fig. 7. Comparison between mean annual actual evapotranspiration (ETa) calcu-
lated by the Hydrus-1D model (ETa-Hydrus) and extracted from the MODIS_MOD16
dataset (ETa-MODIS) during the period from 2001 to 2013 at all AWDN sites.

Fig. 8. Comparison between mean annual groundwater recharge (GR) calculated by
the Hydrus-1D model during the period from 2001 to 2009 (GR-Hydrus) and
extracted from Szilagyi and Jozsa (2013) during the period from 2000 to 2009 (GR-
Szilagyi) at all AWDN sites.
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in western Nebraska, although no irrigation was allowed at the
AWDN stations. Despite those negative values, GR-Szilagyi was
generally comparable to GR-Hydrus. On average, GR-Szilagyi was
lower than GR-Hydrus by 3.41 cm/year for all the AWDN sites or
by 1.84 cm/year if the negative GR values were removed. Similar
reasons for the discrepancy between ETa-Hydrus and ETa-MODIS
could be attributed to the differences between GR-Szilagyi and
GR-Hydrus. Overall, Figs. 7 and 8 show strong similarity of GR
and ETa estimates between model simulations and remotely sensed
data.

3.4.2. Comparisons with tracer-based approaches
Allison et al. (1994) and De Vries and Simmers (2002) suggested

that tracer-based approaches provided the most reliable GR
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estimates; however, those approaches are generally expensive,
which limits their applications to estimate GR. Several tracer-
based studies were carried out in Nebraska to estimate GR, most
notably in the Nebraska Sandhills. Szilagyi et al. (2011) compiled
chloride data from 31 monitoring groundwater wells within the
Nebraska Sandhills and applied the chloride mass balance method
to quantify GR at those locations. Five sites, each within a radius of
20 km from an AWDN station, were identified from Szilagyi et al.
(2011) and are shown in Fig. 1. The respective values of GR from
Szilagyi et al. (2011) and the corresponding model simulations
were 7.8 and 11.26 cm/year at Arthur, 10.3 and 7.04 cm/year at
Barta, 0.9 and 2.17 cm/year at Cedar Point, 6.2 and 8.29 cm/year
at Gothenburg, and 10.3 and 3.77 cm/year at Halsey. In addition,
Adane and Gates (2015) applied both chloride and sulfate mass
balance methods to estimate GR at an experimental site near
Halsey, Nebraska, which was about 19 km from the AWDN station
at Halsey. Under grass-covered conditions, Adane and Gates (2015)
found GR to be 2.7 cm/year from the chloride mass method and
6.9 cm/year from the sulfate mass balance method. By comparison,
GR at Halsey was 3.77 cm/year from the model simulations.
Although the study sites of the above mentioned studies were
not exactly at the locations of the AWDN sites, the GR estimates
from the model simulations and tracer-based approaches were lar-
gely comparable in the Nebraska Sandhills. The findings reported
here were consistent with the findings of Min et al. (2015), who
also showed that GR estimated frommodel simulations was similar
to the one obtained from the chloride mass balance method in an
irrigated agricultural field.
3.4.3. Comparisons with regional water balance methods
Chen and Chen (2004) calibrated a regional groundwater flow

model to observed groundwater levels in the eastern Nebraska
Sandhills. Based on the model simulations, the authors found that
Fig. 9. Relationships of mean annual groundwater recharge (GR) and recharge ratio (GR=
AWDN sites.
about 13% of annual Pwent to recharge the underlying aquifer dur-
ing the period between 1979 and 1990. Based on multidecadal P
and streamflow data, Wang et al. (2009b) quantified water balance
components in the catchments of the eastern Nebraska Sandhills
with negligible anthropogenic disturbances and found that the
ratio of GR=P varied between 8% and 18% for those catchments.
By comparison, the simulation results for the AWDN sites in the
general area largely fell within the range of GR=P from regional
water balance analyses (e.g., 13.41%, 23.13%, 7.06%, and 9.50% at
the sites of Barta, Elgin, Halsey, and Newport, respectively). In
summary, based on the results from various approaches, the GR
values from the model simulations were generally comparable in
the study area, attesting to the feasibility of using large-scale soil
moisture monitoring networks and inverse modeling for estimat-
ing spatial distributions of GR.
3.5. Soil and climatic controls on GR

Due to the highly nonlinear subsurface processes and their
interactions with land surface processes, GRmay vary substantially
over space and time, depending on local conditions (e.g., soil, cli-
mate, and vegetation). It is thus important to understand the
impacts of different controls on recharge processes. Given that
the AWDN sites are covered by natural grasses, the modeling
results were used to investigate soil and climatic controls on the
spatiotemporal variability in GR across the study area.

Fig. 9 shows the relationships of GR and GR=P with P and ETp for

all the AWDN sites. In general, GR showed similar patterns with P
and ETp to the ones of GR=P. On mean annual time scales, a positive

correlation existed between GR=P and P; however, the correlation
between GR=P and ETp was less clear. With increasing P, GR=P
disproportionately increased, indicating that certain P thresholds
P) with mean annual precipitation (P) and potential evapotranspiration (ETp) at all



Fig. 10. Examples of the relationships between annual groundwater recharge ratio (GR/P) with annual precipitation (P) at individual AWDN sites.

T. Wang et al. / Journal of Hydrology 533 (2016) 250–265 263
were needed to meet the atmospheric demands for evapotranspi-
ration before initiating recharge processes. Several reasons could
be attributed to the weak correlation between GR=P and P. First,
in addition to the total amount of P, other rainfall characteristics
may also influence GR, such as rainfall intensity and duration
(Small, 2005). Secondly, as shown in Figs. 4–6, soil properties
played an important role in controlling soil moisture levels and
thus relevant hydrological processes. Due to the soil textural differ-
ences in the study area (Istanbulluoglu et al., 2012), the extent of
the Nebraska Sandhills was used to identify the AWDN sites with
coarser-textured soils. It can be seen from Fig. 9 that under similar
conditions of P and ETp, GR=P were considerably larger for the
AWDN sites within the Nebraska Sandhills. Fig. 9 reflects the sig-
nificant control of soil texture on GR in the study area, which coin-
cided with previous modeling and field studies (Keese et al., 2005;
Wang et al., 2009b). Moreover, it demonstrates the capability of
using inverse modeling approaches to capture the impacts of soil
properties on subsurface hydrological processes.

For practical purposes, it is of importance to understand the
relationship between P and GR (or GR/P) on annual time scales
(Lu et al., 2011; Min et al., 2015; Turkeltaub et al., 2015). Examples
of the relationships between annual P and GR/P are presented in
Fig. 10 for the AWDN sites with contrasting climatic and soil con-
ditions. Note that no lag time between P and GR was considered
here, while delays can be expected for the deep drainage (i.e.,
below the root zones) to reach groundwater tables in the Nebraska
Sandhills (Rossman et al., 2014). The relationships between annual
P and GR/P differed significantly across the sites. Several observa-
tions can be made from Fig. 10. First, at Mitchell Farms, the insuf-
ficient inputs of P led to almost no response of GR/P to the
variations in annual P. Secondly, with increasing P, the response
of GR/P to variations in annual P gradually became stronger,
depending on soil properties. In particular, compared to the sites
outside the Nebraska Sandhills (e.g., Cedar Point and Cozad), the
positive correlations between P and GR/P were much stronger at
Arthur and Barta, regardless of P levels. This was consistent with
the modeling results of Turkeltaub et al. (2015), who showed a
strong positive correlation between P and GR in a semiarid sand
dune area. With further increases in annual P (e.g., at Concord), a
positive correlation between P and GR/P also emerged. Under sim-
ilar levels of water inputs (e.g., P plus irrigation), Min et al. (2015)
obtained a positive correlation between P and GR/P. It should be
also noted that the characteristics of climatic conditions (e.g., cli-
matic seasonality, and the frequency and intensity of storms) could
also affect the ratio of GR/P (Small, 2005). Therefore, the different
relationships between P and GR/P shown in Fig. 10 highlight the
importance of scrutinizing those relationships at individual sites
before application.

4. Conclusions

The feasibility of using inverse vadose zone modeling for esti-
mating spatial distributions of groundwater recharge (GR) from
large-scale soil moisture monitoring networks (>104 km2) was
demonstrated in this study. Long-term soil moisture data at 34
sites from the Automated Weather Data Network (AWDN) within
Nebraska, USA were used to calibrate the Hydrus-1D model. With
the help of the data in public domain and literature values for
parameterization of the Hydrus-1D model, simulated soil moisture
generally well matched the observed data under different soil and
climatic conditions.

The mean annual GR estimated from the calibrated models var-
ied over three orders of magnitude across the study area. To test
the model results, estimates of GR and actual evapotranspiration
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(ETa) from the calibrated models were compared to the data
obtained from other techniques from the study area, including
remote sensing, tracer-based approaches, and regional water bal-
ance. Overall, the simulation results were comparable to GR and
ETa estimates from those techniques, attesting to the feasibility
of using inverse modeling and large-scale soil moisture monitoring
networks for estimating spatial distributions of GR.

The impacts of soil and climatic conditions on GR were assessed
using the simulation results. The data showed that on mean annual
time scales, both soil and precipitation (P) had significant impacts
on GR in the study area with sandy soils generating higher GR
under similar climatic conditions. On annual time scales, various
relationships between GR and P emerged at the AWDN sites,
depending on local soil and climatic conditions. In general, positive
correlations between GR and P existed for the AWDN sites with
coarser-textured soils or under wetter climatic conditions. Given
the growing global network for soil moisture monitoring (Crow
et al., 2012; Ochsner et al., 2013), data warehouses (Dorigo et al.,
2011), and global datasets of soil texture (Shangguan et al.,
2014), the proposed framework could be used to generate addi-
tional water balance flux datasets at various locations. Finally, it
needs to note that this study only briefly discussed management
implications of this work. A full assessment of aquifer sustainabil-
ity should include inputs from a multitude of stakeholder groups in
order to design pragmatic management strategies of this complex
resource. In particular, large uncertainties associated with GR esti-
mates as demonstrated in this study need to be taken into account
when making water management decisions. Future studies are also
needed to investigate the required density of soil moisture moni-
toring networks for estimating GR at catchment and regional scales
using inverse modeling approaches.
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