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Abstract: Flow-routing at a tributary (Koros River) of the Tisza River in Hungary was achieved by relating the storage coefficient (k) of
the state-space formulated discrete linear cascade model (DLCM) to the concurrent discharge rate of the Tisza. As a result, the root
mean square error of the 1-day forecasts decreased from 25 m3 · s−1 (k ¼ 1.7 days−1 and the number of storage elements is 2) with
the corresponding Nash-Sutcliffe-type performance value of 0.95 to 11 m3 · s−1 in the calibration period and to 15 m3 · s−1 in the val-
idation period (the corresponding Nash-Sutcliff-type performance values are 0.99 and 0.98, respectively). During floods of the Tisza, the k
value decreased to as little as 0.35 days−1, indicating a significant slowdown of the tributary flood-wave because of the resulting backwater
effect. Subsequent stage-forecasts were aided by a coupled autoregressive moving-average (1,1) model of the DLCM error sequence and
the application of the Jones formula in addition to a conveyance curve, the latter yielding the most accurate 1-day forecasts with a
root mean square error of 28 cm and Nash-Sutcliff-type performance value of 0.99 for the combined (validation and calibration) time
periods. The method requires no significant change in the mathematical structure of the original DLCM and thus is well-posed for
inclusion of existing operational streamflow-forecasting schemes. DOI: 10.1061/(ASCE)HE.1943-5584.0000771. © 2014 American
Society of Civil Engineers.
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Introduction

Almost every textbook of hydrology (e.g., Beven et al. 2009)
mentions that traditional flow-routing methods, because of their
inherent assumptions, are not recommended for river reaches
significantly affected by backwater effects. Yet, traditional flow-
routing methods are still widely used in hydrological forecasting
centers such as the National Hydrological Forecasting Service
(NHFS) in Hungary because of the minimal data-requirement of
the flow-routing methods (typically only inflow) and their very fast
numerical (or analytical) solutions. One would think that such con-
siderations would not matter in the 21st century of fast computers,
but they become a factor when one deals with several hundreds
of gauging stations and performs operational forecasts 2 ×=day
(7 days=week) from 12 h up to 6 days in advance, and all that
with minimal human and financial resources such as the practice
at NHFS.

The discrete linear cascade model (DLCM; e.g., Szollosi-Nagy
1982) in use at NHFS is a spatially (using a backward difference
scheme) and temporally discretized form of the linear kinematic
wave equation (Lighthill and Witham 1955) written in a state-
space form; see Szilagyi and Szollosi-Nagy (2010), Theorem 3,

p. 34. Because of the finite spatial differences involved, DLCM
also approximates the diffusion wave equation (Szilagyi and
Szollosi-Nagy 2010, p. 59) in its flow-routing either in a pulsed
[i.e., the last measured upstream discharge rate (qin) held constant
in time, as piece-wise continuous input to the river reach, until
the next measurement arrives (Szollosi-Nagy 1982)] or linearly
interpolated (between consecutive inflow measurements) data-
framework (Szilagyi 2003). In this context, the latter approach
is summarized next. For a rigorous mathematical treatment on
the theory, see Szilagyi and Szollosi-Nagy (2010). Over the past
decade DLCM has also been applied to account for and infer
stream-aquifer interactions (Szilagyi 2004; Szilagyi et al. 2006)
and to detect historical changes in channel properties (Szilagyi
et al. 2008).

The state and output equations of the DLCM for a river reach
comprised of n number of subreaches can be written as

_SðtÞ ¼ FSðtÞ þGqinðtÞ ð1aÞ

qoutðtÞ ¼ HSðtÞ ð1bÞ
where qout = outflow of the stream reach; the dot denotes the time-
rate of change; t = time-reference, F and S are the n × n state matrix
and n × 1 state variable, respectively; and G and H are the n × 1
input and 1 × n output vectors, defined as

F ¼

2
664
−k
k −k

. .
. . .

.

k −k

3
775 ð2aÞ

SðtÞ ¼

2
6664
S1ðtÞ
S2ðtÞ
..
.

SnðtÞ

3
7775 ð2bÞ
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G ¼

2
664
1

0

..

.

0

3
775 ð2cÞ

H ¼ ½ 0 0 · · · k � ð2dÞ
where Si denotes the stored water volume in subreach i; and k =
storage coefficient of the subreach, the same value for each. The
one-step-ahead (from t to tþΔt) solution of Eq. (1) in a linearly
interpolated data framework becomes (Szilagyi 2003)

SðtþΔtÞ ¼ ΦðΔtÞSðtÞ þ Γ1ðΔtÞqinðtÞ þ Γ2ðΔtÞqinðtþΔtÞ
ð3Þ

where Φ is the corresponding n × n state-transition matrix; and Γ1
and Γ2 are the n × 1 input-transition vectors, defined as

ΦðΔtÞ ¼

2
6664

e−kΔt

kΔte−kΔt e−kΔt

..

. . .
.

ðkΔtÞn−1
ðn−1Þ! e−kΔt ðkΔtÞn−2

ðn−2Þ! e−kΔt · · · e−kΔt

3
7775 ð4aÞ
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8>>>>>>><
>>>>>>>:

Γð1;kΔtÞ
kΓð1Þ

h
1

kΔt − e−kΔt

Γð1;kΔtÞ
i

Γð2;kΔtÞ
kΓð2Þ

h
2

kΔt − kΔte−kΔt

Γð2;kΔtÞ
i

..

.

Γðn;kΔtÞ
kΓðnÞ

h
n

kΔt − ðkΔtÞn−1e−kΔt

Γðn;kΔtÞ
i
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>>>>>>>;
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8>>>>>>><
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i
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kΓð2Þ

h
1 − 2

kΔt þ kΔte−kΔt
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i

..

.

Γðn;kΔtÞ
kΓðnÞ

h
1 − n

kΔt þ ðkΔtÞn−1e−kΔt

Γðn;kΔtÞ
i

9>>>>>>>=
>>>>>>>;

ð4cÞ

where Γð·Þ with one argument are the complete gamma functions,
and with two arguments are the incomplete gamma functions, as
defined by Abramowitz and Stegun (1965). During actual forecast-
ing the inflow at tþΔt is not yet known but is estimated from
another streamflow-routing upstream. The streamflow forecast
is obtained by applying the output [Eq. (1)] over Eq. (3), which
is the multiplication of Sn at tþΔt by k. The linearly interpolated
data framework for flow-routing is expected to yield more accu-
rate forecasts than the classical pulsed-data framework because
it represents streamflow more realistically than the latter (which
assumes sudden jumps in the flow value at the time of the
measurements).

The state-space formulation allows for a simple estimation of
the initial condition (Szilagyi and Szollosi-Nagy 2010), which
is the distribution of the stored water volumes in each subreach at
the start of predictions, eliminating the need of starting the calcu-
lations from a relaxed state or from a near steady-state, as is the
requirement of classical linear flow-routing techniques.

The model has two parameters to calibrate, (1) the number
of sub-reaches n, and (2) the storage coefficient k of each subreach.
If the length (L) of the river reach is known, then calibration is
helped by the fact that Lkn−1 yields the mean flood-wave celerity
(the value of which can be fairly well estimated within a narrow
range from records of concurrent upstream and downstream flow

rates), which significantly restricts the possible choices for the k
and n value combinations, thus speeding up considerably any trial-
and-error calibration, for example. For river reaches with notable
backwater effects (e.g., tidal rivers or tributary junctions) and/or
floodplains, the wave celerity may change with respect to time,
necessitating modification of the original model or its output by
different adjustment methods. For example, river reaches with
floodplains are often modeled through an amplitude distribution
scheme, in which the inflow rate is deconstructed into several com-
ponents depending on how the inflow value falls into predefined
intervals (Becker and Kundzewicz 1987). Each inflow component
is then routed separately by linear models having differing param-
eters and the results summed. This so-called multilinear flow-
routing approach [including also a time distribution scheme of the
inflows; e.g., Perumal et al. (2009)] does not account for backwater
effects, as Becker and Kundzewicz (1987) noted. A simple method
is discussed next that addresses how to account for backwater
effects in the DLCM.

Accounting for Backwatwer Effects in the DLCM

The one-step-ahead solution of Eq. (3) calculates the distribution
of subreach storages for tþΔt in each time t, with the actual
storage coefficient k. For example, at tributary confluences, the
primary-stem river stage/discharge often influences the dynamics
of the flood-wave propagation along the tributary near the junc-
tion by slowing it down during simultaneous flood conditions
on the primary stem. This way, the storage coefficient value k
can be conditioned on the concurrent primary-stem discharge/stage
value, leading to temporally changing kðtÞ values that remain con-
stant with respect to each computational time intervalΔt in Eq. (3).
In the study area in Hungary (Figs. 1 and 2), the confluence of the
Tisza (mean annual flow Qm of 550 m3 · s−1 at Csongrad) and its
tributary, the Koros River (Qm ¼ 105 m3 · s−1 at Kunszentmarton),
such a relationship was sought.

Flow-routing on the Koros River took place between Gyoma
and Kunszentmarton, a 58-km river stretch (the channel-bottom
slope S0 is 4 cm · km−1), which takes in the unmeasured flow
of the Hortobagy-Berettyo drainage and irrigation canal (Fig. 2).
To account for this unknown quantity of water, the Hydraulic En-
gineering Centers River Analysis System (HEC-RAS; USACE
2010) one-dimensional (1-D) hydraulic model was employed for
the Tisza by staff of the Middle-Tisza Water Authority, between
Szolnok [with measured flow-rate as upper boundary condition
(BC)] and Mindszent (with measured stage as lower BC), and si-
multaneously for the Koros between Gyoma (measured flow-rate
BC) and Csongrad to obtain the flow rates at Kunszentmarton,
without the contribution of the Hortobagy-Berettyo Canal for
the October 1, 2010–September 30, 2011, time period. The
HEC-RAS model had previously been calibrated with detailed
cross-sectional data on both rivers for the 2006 flood period on
the Tisza. Fig. 3 displays the HEC-RAS model results when the
measured streamflow rates at Gyoma were augmented by the
difference in the measured and HEC-RAS-obtained values at
Kunszentmarton by adding this difference to the measured flow
at Gyoma before executing HEC-RAS again. For evaluation of
the DLCM, this corrected HEC-RAS-obtained time-series is used
(in place of the measured values at Kunszentmarton) subsequently
to separate the effect of the unknown flow-rates of the Hortobagy-
Berettyo canal on the performance of DLCM.

Employing a trial-and-error method (in a root mean square
sense) and Δt ¼ 1 day, DLCM calibration (for February 1,
2011–September 30, 2011) yielded n ¼ 2 and k ¼ 1.7 days−1

70 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / JANUARY 2014

J. Hydrol. Eng. 2014.19:69-77.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a-

L
in

co
ln

 o
n 

01
/0

3/
14

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



with root mean square error ðRMSEÞ ¼ 25 m3 · s−1 and Nash-
Sutcliff-type (NSC) performance value = 1 − ðRMSE=SDÞ2 ¼
0.95 (where SD = standard deviation of the daily discharge values)
for the October 1, 2010–September 30, 2011, time period. The
established calibration period is shorter than the original data
record because the extended flood-event on the Tisza (Fig. 4)
and its backwater effect on the Koros were intended to be excluded
from the calibration to have a model that works truly optimally
during backwater-free periods. Fig. 4 displays the results of the
flow-routing. As long as the flow rate of the Tisza is less than
about 600 m3 · s−1, the DLCM is fairly accurate, but in time peri-
ods when the Tisza has a flood, the DLCM responds too fast on
both the rising and falling limbs of the flood wave. Rather than

conditioning the storage coefficient value k on the discharge of
the Tisza, its inverse K ¼ k−1 is used; because K yields the average
residence time of the flood wave within the subreach and with
increasing flow rate of the Tisza, this residence time would also be
expected to increase. As a result, K was related to the discharge rate
of the Tisza at Csongrad (QT , obtained from HEC-RAS) in excess
of a threshold value Qth ¼ 600 m3 · s−1

KðtÞ ¼ a½QTðtÞ–Qth�b þ K ð5Þ

where a and b are constants to be calibrated; and K ¼
k−1 ¼ 1.7−1 ¼ 0.59 days ¼ 50,976 s. Trial-and-error optimization
(again in a root mean square sense) yielded a ¼ 146.88 s2 · m−3

Fig. 1. Location of the study area within Hungary

Fig. 2. Confluence of the Tisza and Koros Rivers
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and b ¼ 1. Fig. 5 depicts the dependence of the KðtÞ and kðtÞ
values on the flow rate of the Tisza at Csongrad. Similar investi-
gation was done with stage values (employing meters at an
elevation greater than mean sea level) in place of the discharge
rates in Eq. (5) with a threshold value of 80 m (corresponding
with Qth ¼ 600 m3 · s−1), but it yielded a nonlinear relationship
(b ¼ 0.8) and a somewhat worse performance than the discharge
values. The obtained values of the parameters (a, b) in Eq. (5), in
addition to the critical discharge value, are site-specific, changing
by location. However, the approach of relating the value of K to
some measure of the extent of the composite backwater effect is
expected to be transferable in general.

Application of a time-varying storage coefficient by Eq. (5)
brought a significant improvement in the DLCM predictions
(Fig. 6), with RMSE ¼ 11 m3 · s−1 (44% of the original value)
and NSC=0.99. Fig. 7 displays the resulting change in the
storage coefficient and the kinematic-wave celerity values,

cðtÞ ¼ LkðtÞn−1. The flood waves of the Koros River slow down
considerably (from about 2 km · h−1 to less than 0.5 km · h−1)
during backwater effects, leading to a flattening and spreading out
of the flood wave. Validation of the method was performed on
a 2-year period (October 1, 2008–September 30, 2010) preceding
the calibration period and yielded RMSE ¼ 15 m3 · s−1 and
NSC ¼ 0.98, which are slightly worse than the calibration results.
When the validation and calibration periods are combined, the
model has RMSE ¼ 14 m3 · s−1 and NSC ¼ 0.984.

Stochastic Submodel of DLCM Prediction Errors

As is the case with most deterministic flow-routing models, the
prediction error sequence displays a high degree of autocorrelation
[Fig. 8(a)]. As the simplest solution to improve model performance,
deterministic models are often combined with an additional sto-
chastic submodel (Szilagyi and Szollosi-Nagy 2010). The writers

Fig. 3. Reconstructed streamflow time-series of the Koros River at Kunszentmarton by HEC-RAS, accounting for the unknown flow rates of
the Hortobagy-Berettyo canal; original discharge indicates HEC-RAS-modeled values from measured discharge at Gyoma; corrected indicates
HEC-RAS-modeled values from measured discharge at Gyoma augmented by the difference (measured and original HEC-RAS-modeled) at
Kunszentmarton

Fig. 4. Discrete linear cascade model flow-routing results (n ¼ 2,Δt ¼ 1 day) with a constant storage coefficient (k ¼ 1.7 day−1), October 1, 2010–
September 30, 2011; Q (Kunszentmarton) denotes the corrected HEC-RAS-obtained flow values; the inset displays the concurrent discharge of the
Tisza at Csongrad
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tried the simplest first-order and second-order autoregressive
[AR(1), AR(2)] in addition to autoregressive moving average
[ARMA(1,1)] models, and found the latter the best-performing.
Defining model error as the predicted value minus the observed
value, the coupled deterministic-stochastic model’s one-step-ahead
prediction (i.e., the conditional expectation with the condition of
having the values observed at time t) will become

Q̂�ðtþΔtÞ ¼ HSðtþΔtÞ − Φ½Q̂ðtÞ −QðtÞ� þ θ½Q̂ðtÞ − Q̂�ðtÞ�
ð6Þ

where Q̂ = DLCM 1-day prediction of the flow rate (Q) at
Kunszentmarton; and Q̂� = combined DLCM-ARMA(1,1) 1-day
prediction of the flow rate (Q) at Kunszentmarton. The estimated
values of φ ¼ 0.68 and θ ¼ −0.72 for the autoregressive and
moving-average coefficients, respectively, came from the method
of moments equations; e.g., Box et al. (1994)

Fig. 6. Discrete linear cascade model flow-routing results (n ¼ 2,Δt ¼ 1 day) with a time-varying storage coefficient (a function of the Tisza River
flow rate at Csongrad), calibration period of October 1, 2010–September 30, 2011; Q (Kunszentmarton) denotes the corrected HEC-RAS-obtained
flow values; the inset displays the concurrent discharge of the Tisza at Csongrad

Fig. 5. Dependence of the mean residence time KðtÞ and storage coefficient kðtÞ values on the flow rate of the Tisza at Csongrad (QT ) greater than a
threshold value of Qth ¼ 600 m3 · s−1; in the equation for K the flow rates must be defined in m3 · day−1

Fig. 7. Temporal change in the storage coefficient kðtÞ and flood-
wave celerity cðtÞ values in the calibration period, October 1, 2010–
September 30, 2011
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r1 ¼
ð1 − φθÞðφ − θÞ
1þ θ2 − 2φθ

ð7aÞ

r2 ¼ φr1 ð7bÞ
where r1 and r2 = one-step and two-step sample autocorrelation
coefficient values [Fig. 8(a)] of the DLCM errors. Fig. 8(b) displays
the autocorrelation function of model errors for the combined
deterministic-stochastic model. Although the chosen stochastic
model is not perfect (several values fall outside the confidence
interval), it has the distinct advantage of being simple, and having
only two parameters the optimized values are expected to be
relatively stable. Compared with the original DLCM, the RMSE
decreased from 11 to 9 m3 · s−1, whereas the NSC value improved
in the third decimal (from 0.991 to 0.994). At very large values of
NSC, the value changes relatively little to even significant improve-
ments in the RMSE value (about a 20% decrease); Fig. 9 shows the
combined model results.

Stage Forecasting with the Combined DLCM-ARMA
(1,1) Model

In flood-defense practice the primary information is stage level in-
stead of the discharge rate. Even an accurate flow-routing model in
discharge values may be inaccurate in stage values without the cor-
rect transformation of the discharge rates into stage levels (Fig. 10).
This inaccuracy is not surprising after evaluating the permanent
rating curve and the HEC-RAS-derived concurrent discharge Q
and stage H values (Fig. 11), indicating a significant loop in the
Q versus H relationship at Kunszentmarton.

To account for the loop-rating curve, first the Jones formula was
applied (Fenton 2001)

QðtÞ ¼ Q0ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

S0cðtÞ
∂HðtÞ
∂t − DðtÞ

c3ðtÞ
∂2HðtÞ
∂t2

s
ð8Þ

where Q0 = permanent discharge value; and D = diffusion coeffi-
cient = Qð2BS0Þ−1, where B = channel width. The diffusion term
contributes very little to the outcome and it was subsequently

Fig. 8. Autocorrelation function with respect to the calibration period
of October 1, 2010–September 30, 2011: (a) DLCM; (b) DLCM-
ARMA(1,1) model errors

Fig. 9. Combined deterministic-stochastic DLCM-ARMA(1,1) flow-routing results (n ¼ 2, Δt ¼ 1 day) with a time-varying storage coefficient
(a function of the Tisza River flowrate at Csongrad), calibration period of October 1, 2010–September 30, 2011; Q (Kunszentmarton) denotes the
corrected HEC-RAS-obtained flow values
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Fig. 10. Measured and DLCM-ARMA(1,1)-predicted stage levels at Kunszentmarton with the help of a permanent rating curve (October 1, 2008–
September 30, 2011); RMSE ¼ 118 cm and NSC ¼ 0.24

Fig. 11. Permanent rating curve for Kunszentmarton and the concurrent Q versus H values derived from HEC-RAS

Fig. 12. Modified conveyance curve for Kunszentmarton
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neglected in the Q to H transformations. Eq. (8) is implicit in the
desired H value. Application of the Jones formula improved the
stage forecast only moderately, by a 17% decrease in RMSE; con-
sequently, an alternative solution, the application of the conveyance
function κ, was selected in the form (Fenton 2001)

QðtÞ ¼ κ½HðtÞ�
ffiffiffiffiffiffiffiffiffiffiffi
SHðtÞ

p ≈ κm½HðtÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HKMðtÞ −HBðtÞ

p
ð9Þ

where SH = slope of the streamwater surface; κm ¼ κL−1=2, which
is the modified conveyance function (Fig. 12) derived by the staff of
the Koros-Valley Water Authority; and HKM and HB = stage levels
at Kunszentmarton and Bokeny (Fig. 2), respectively. Eq. (9) is a
bivariate rating curve. Rearrangement of Eq. (9) yields the DLCM-
ARMA(1,1) 1-day forecast of the stage at Kunszentmarton

Ĥ�
KMðtþΔtÞ ¼

�
Q̂�

KMðtþΔtÞ
κmðtÞ

�
2

þ ĤBðtþΔtÞ ð10Þ

where the predicted stage level at Bokeny (ĤB) is obtained
by a backward difference-scheme as ĤBðtþΔtÞ ¼ 2HBðtÞ−
HBðt −ΔtÞ. Fig. 13 displays the resulting 1-day stage forecasts.
Compared with the forecasts using a permanent rating curve, the
RMSE value changed from 118–28 cm, and the corresponding
NSC value from 0.24–0.99, a significant improvement in both mea-
sures. The stage forecasts became as efficient in accuracy as the
discharge forecasts (Table 1).

Summary and Conclusions

The DLCM is a physically based flow-routing method (Szollosi-
Nagy 1982) written in a state-space form that explicitly accounts
for the temporally and spatially discrete nature of the input data.
It has two parameters, (1) the number of subreaches, and (2) their
storage coefficient.

The significant backwater effect of the Tisza on its tributary,
the Koros River, was accounted by relating the value of the storage
coefficient k to the flow rate of the Tisza. The value of k thus
changes between each routing time-step, which was chosen to be
1 day. The changing value of k does not cause any additional
difficulties in a state-space form as long as the multiple-step pre-
dictions are done recursively [i.e., by the repetitive application of
Eq. (3) with an update of the storage coefficient value in each time
step] and not through an explicit discrete convolution.

The deterministic flow-routing of DLCM was also augmented
by an additional stochastic ARMA (1,1) model component. Be-
cause in flood-defense practice, stage forecasts are more valuable
than forecasted discharges, the latter were transformed into stage
values by application of a permanent rating curve. Given the large
inaccuracy (not least because of the significant backwater effect
of the Tisza) of the stage forecasts, the Jones formula was sub-
sequently applied with moderately improved predicted values.
Thus, the Jones formula was replaced by a conveyance function,
which implies a bivariate rating curve in which flow rate is not

Fig. 13. Measured and DLCM-ARMA(1,1)-predicted stage levels at Kunszentmarton with the help of the modified conveyance curve (October 1,
2008–September 30, 2011); RMSE ¼ 28 cm and NSC ¼ 0.99

Table 1. Root Mean Square Error and Nash-Sutcliff-Type Performance Values for Different Model Setups

RMSE, m3 · s−1 for Q
and cm for h, and
NSC (%) values

DLCM with constant
k ¼ 1.7 days−1

DLCM with
time-varying

k, kðtÞ
DLCM-ARMA
(1,1) with kðtÞ

DLCM-ARMA(1,1)
with kðtÞ, permanent

rating curve

DLCM-ARMA(1,1)
with kðtÞ, conveyance

function

Predicted variable Q Q Q h h
Calibration period,
October 2010–September 2011

25, 95; calibration period
February–September 2011

11, 99.1 9, 99.4 113, 31 24, 99.5

Verification period,
October 2008–September 2010

33, 91 15, 98 11, 98.9 134, 17 30, 99.2

Combined period,
October 2008–September 2011

30, 92 14.25, 98.4 10.38, 99.1 118, 24 28, 99.3

Note: h = stage value (at Kunszentmarton); k = storage coefficient of DLCM; and Q = discharge (at Kunszentmarton).
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only determined by stage but also by the slope of the water surface.
This way, the accuracy of the discharge forecasts were recaptured in
the ensuing stage forecasts with NSC ¼ 0.99.

The described method is the first such application of the DLCM
(i.e., accounting for backwater effects by changing the storage
coefficient value of the cascade) to the writers’ best knowledge.
The method does not require any hydraulic parameter of the stream
reach in which routing takes place. If the length of the reach is
known, it helps speed up the parameter-calibration process. In this
paper, the k values were related to the discharge rate of the Tisza
but in other applications the employment of stage values may yield
better results. The suggested adjustment of the storage coefficient
can also be achieved in amplitude distribution multilinear model
situations (Becker and Kundzewicz 1987), in which, for example,
two cascades are set up in parallel, describing (1) channel flow, and
(2) floodplain flow conditions. Adjustment of the k values (two in
this manner) may then happen separately.
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Notation

The following symbols are used in this paper:
a = empirical coefficient (L−3 · T2);
b = empirical coefficient;
c = kinematic-wave celerity (L · T−1);
D = diffusion coefficient (L2 · T−1);
F = n × n state matrix;
G = n × 1 input vector;
H = stage level (L);
H = 1 × n output vector (T−1);
Ĥ = predicted stage level, using a backward-difference

scheme (L);
Ĥ� = 1-day-ahead DLCM-ARMA(1,1) model prediction of the

stage level (L);
K = mean residence time (T), the inverse of k;
k = storage coefficient (T−1);
L = river-reach length (L);
n = number of subreaches;
Q = streamflow rate (L3 · T−1);

Qm = mean annual streamflow rate (L3 · T−1);
QT = streamflow rate of the Tisza at Csongrad (L3 · T−1);
Qth = threshold flow-rate value of the Tisza at Csongrad

(L3 · T−1);
Q̂ = 1-day-ahead DLCM prediction of the discharge rate

(L3 · T−1);

Q̂� = 1-day-ahead DLCM-ARMA(1,1) model prediction of the
discharge rate (L3 · T−1);

qin = river-reach inflow rate (L3 · T−1);
qout = river-reach outflow rate (L3 · T−1);
r1 = one-step sample autocorrelation coefficient;
r2 = two-step sample autocorrelation coefficient;
S = n × 1 state vector (L3);
Si = water storage in the ith subreach (L3);
S0 = channel-bottom slope;
t = time (T);
Γ = n × 1 input-transition vector;

Γð.Þ = complete (with one argument) or incomplete (with two
arguments) gamma function;

Δt = routing time-step (T);
θ = moving-average coefficient;
κ = conveyance function (L3 · T−1);

κm = modified conveyance function, κm ¼ κL−1=2ðL2.5 · T−1Þ;
Φ = n × n state-transition matrix; and
φ = autoregressive coefficient.

References

Abramowitz, M., and Stegun, I. A. (1965). Handbook of mathematical
functions, Dover, New York.

Becker, A., and Kundzewicz, Z. W. (1987). “Nonlinear flood routing with
multilinear models.” Water Resour. Res., 23(6), 1043–1048.

Beven, K., Shaw, E. M., Chappell, N. A., and Lamb, R. (2009). Hydrology
in practice, 4th Ed., Taylor and Francis, New York.

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time series
analysis, forecasting and control, 3rd Ed., Prentice Hall, Upper Saddle
River, NJ.

Fenton, J. D. (2001). “Rating curves: Part 1–Correction for surface slope.”
Proc., Conf. on Hydraulics in Civil Engineering, Institution of Engi-
neers, Barton, Australia, 309–317.

Lighthill, M. J., and Witham, G. B. (1955). “On kinematic floods. I: Flood
movements in long rivers.” Proc. Roy. Soc. London Ser. A Math. Phys.
Sci., 229(1178), 281–316.

Perumal, M., Sahoo, B., Moramarco, T., and Barbetta, S. (2009). “Multi-
linear Muskingum method for stage-hydrograph routing in compound
channels.” J. Hydrol. Eng., 10.1061/(ASCE)HE.1943-5584.0000029,
663–670.

Szilagyi, J. (2003). “State-space discretization of the KMN-cascade in a
sample-data system framework for streamflow forecasting.” J. Hydrol.
Eng., 10.1061/(ASCE)1084-0699(2003)8:6(339), 339–347.

Szilagyi, J. (2004). “Accounting for stream-aquifer interactions in the state-
space discretization of the KMN-cascade for streamflow forecasting.”
J. Hydrol. Eng., 10.1061/(ASCE)1084-0699(2004)9:2(135), 135–143.

Szilagyi, J., Parlange, M. B., and Balint, G. (2006). “Assessing stream-
aquifer interactions through inverse modeling of flow routing.” J. Hy-
drol., 327(1), 208–218.

Szilagyi, J., Pinter, N., and Venczel, R. (2008). “Application of a routing
model for detecting channel flow changes with minimal data.” J. Hy-
drol. Eng., 10.1061/(ASCE)1084-0699(2008)13:6(521), 521–526.

Szilagyi, J., and Szollosi-Nagy, A. (2010). Recursive streamflow forecast-
ing: A state-space approach, Taylor and Francis, New York.

Szollosi-Nagy, A. (1982). “The discretization of the continuous linear
cascade by means of state-space analysis.” J. Hydrol., 58(3), 223–236.

U.S. Army Corps of Engineers (USACE). (2010). “Hydraulic reference
manual 4.1.” 〈http://www.hec.usace. army.mil/software/hec-ras〉 (Sep.
27, 2013).

JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / JANUARY 2014 / 77

J. Hydrol. Eng. 2014.19:69-77.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a-

L
in

co
ln

 o
n 

01
/0

3/
14

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

http://dx.doi.org/10.1029/WR023i006p01043
http://dx.doi.org/10.1098/rspa.1955.0088
http://dx.doi.org/10.1098/rspa.1955.0088
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000029
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000029
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000029
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000029
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000029
http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:6(339)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:6(339)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:6(339)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2004)9:2(135)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2004)9:2(135)
http://dx.doi.org/10.1016/j.jhydrol.2005.11.018
http://dx.doi.org/10.1016/j.jhydrol.2005.11.018
http://dx.doi.org/10.1061/(ASCE)1084-0699(2008)13:6(521)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2008)13:6(521)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2008)13:6(521)
http://dx.doi.org/10.1016/0022-1694(82)90036-1
http://www.hec.usace
http://www.hec.usace
http://www.hec.usace
http://www.hec.usace
http://www.hec.usace

