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Abstract Monthly evapotranspiration (ET) rates for 1979–2015 were estimated by the latest,
calibration‐free version of the complementary relationship (CR) of evaporation over the conterminous
United States. The results were compared to similar estimates of three land surface models (Noah,
VIC, Mosaic), two reanalysis products (National Centers of Environmental Protection Reanalysis II,
ERA‐Interim), two remote‐sensing‐based (Global Land Evaporation Amsterdam Model,
Penman‐Monteith‐Leuning) algorithms, and the spatially upscaled eddy‐covariance ET measurements of
FLUXNET‐MTE. Model validations were performed via simplified water‐balance derived ET rates
employing Parameter‐Elevation Regressions on Independent Slopes Model precipitation, United States
Geological Survey two‐ and six‐digit Hydrologic Unit Code (HUC2 and HUC6) discharge, and terrestrial
water storage anomalies from Gravity Recovery and Climate Experiment, the latter for 2003–2015. The
CR outperforms all other multiyear mean annual HUC2‐averaged ET estimates with root‐mean‐square
error = 51 mm/year, R = 0.98, relative bias of −1%, and Nash‐Sutcliffe efficiency = 0.94, respectively.
Inclusion of the Gravity Recovery and Climate Experiment data into the annual water balances for the
shorter 2003–2015 period does not have much effect on model performance. Similarly, the CR outperforms
all other models for the linear trend of the annual ET rates over the HUC2 basins. Over the significantly
smaller HUC6 basins where the water‐balance validation is more uncertain, the CR still outperforms all other
models except FLUXNET‐MTE, which has the advantage of possible local ET measurements, a benefit that
clearly diminishes at the HUC2 scale. As the employed CR is calibration‐free and requires only very few
meteorological inputs, yet it yields superior ET performance at the regional scale, it may serve as a diagnostic
and benchmarking tool for more complex and data intensive models of terrestrial evapotranspiration rates.

1. Introduction

Globally, about 70% of the precipitation over land returns to the atmosphere via terrestrial evapotranspira-
tion (ET; Oki & Kanae, 2006), which at the same time consumes approximately 60% of the energy available
at the land surface (Trenberth et al., 2009). The variations in ET are also regarded as an important indicator of
hydrological responses to global warming since ET plays a key role in controlling terrestrial water availability
and climatic conditions (Seager et al., 2007; Zeng et al., 2017).

While ET can be accurately monitored by a wide variety of ground measurements (e.g., lysimeters, energy
balance Bowen ratio, eddy covariance [EC], and scintillometry; Allen et al., 2011), estimation of large‐scale,
long‐term ET remains a difficult task since these in situ techniques typically cover short periods (mainly less
than a decade) with limited spatial extent. As a result, a number of approaches employing land surface
models (LSM; Cai et al., 2014; Ma et al., 2017; Xia et al., 2016), remote sensing (RS) algorithms
(Fisher et al., 2008; Miralles et al., 2011; Mu et al., 2011), data assimilation systems (Lu et al., 2017; Xu
et al., 2019), and/or geostatistical upscaling of ground ET measurements (Jung et al., 2011), all with inputs
from meteorological as well as surface property data, have been devised to quantify ET over larger areas
and longer periods. However, most methods mentioned above require a significant number of soil‐ and
vegetation‐related parameters as inputs, which are typically interpolated from limited point‐scale
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measurements/surveys and/or are retrieved from satellite/airborne observations (Masson et al., 2003), thus
leading to additional uncertainties. These uncertainties emerge because (i) ground survey of soil profiles is
yet relatively scarce in developing countries (Shangguan et al., 2013; Shi et al., 2004) and the simple average
of those small‐scale soil features will not result in a value representative at the scale of the modeling grid due
to typically considerable spatial variability in them, although high‐resolution spatially resolved and contin-
uous soil properties maps become available recently in certain developed countries (Chaney et al., 2019) and
(ii) translation of remote sensing signals into vegetation traits has great uncertainties because of the existing
challenges in the treatment of confounding factors in spectrum‐trait relations (Zurita‐Milla et al., 2015). For
example, a wide range of evaluations (Dai et al., 2019; Mölders, 2005; Teuling et al., 2009) have identified
that different LSMs obviously diverge in accuracy for predicting surface fluxes due to empirical parameters
(e.g., physiological, phenological, thermal, hydraulic, radiative) employed to represent multiple vegetation
and soil types. Moreover, the poor scalability of the algorithms and the limited consideration of subgrid
heterogeneity are also great challenges in LSMs for effectively representing the terrestrial hydrological
processes, as was highlighted by Samaniego et al. (2017).

While state‐of‐the‐art LSMs and RSmodels with advanced parameterizations of the surface fluxes are able to
simulate large‐scale ET in a satisfactory manner, they typically need detailed soil and vegetation data as
inputs (e.g., Martens et al., 2017; Mu et al., 2011; Xia et al., 2012). For circumventing the difficulties in
representing substantial heterogeneity in soil type, thickness, layering, vegetation cover, and rooting depth
on the regional, continental, and/or global scales, the complementary relationship (CR) of evaporation
(Bouchet, 1963) may be an appropriate choice for the estimation of ET because it does not require any
surface, soil, or vegetation information as input.

The CR predicts the latent heat flux of the (vegetated or bare) land surface over a suitably long period of time,
typically five days or longer (to filter out the effect of passing weather fronts (Morton, 1983) that may tem-
porarily disturb the dynamic balance between land ET rate and the resulting moisture content of the air)
by relating the ET rate of a small wet patch (ETp), typically affected by horizontal energy advection (Eh),
to that (ETw) of a wet land surface of regional extent (thus with vanishing Eh) under the same assumed
net surface radiation and wind conditions. For almost half a century following the pioneering work of
Bouchet (1963), the CR relationship between three evaporation terms: actual ET, wet patch ET (ETp), and
wet‐environment ET (ETw), was thought to be linear in nature. Inspired by the work of Han et al. (2012)
on the boundary conditions of the CR, Brutsaert (2015) formulated a more general, nonlinear version of
the complementary relationship of evaporation.

Recently, Szilagyi et al. (2017), building on the latest developments of the nonlinear formulation of the CR by
Brutsaert (2015) and Crago et al. (2016), proposed a calibration‐free nonlinear CR model with more appro-
priate physical constraints. While the CR model of Brutsaert (2015) was originally intended to be generally
applicable, it still contains a tunable parameter on top of its reliance of accurate plot‐scale ECmeasurements
(e.g., Brutsaert et al., 2017; Crago & Qualls, 2018; Han & Tian, 2018; Hu et al., 2018) for the calibration of a
second model parameter. In the context of large‐sample hydrological studies, however, Gupta et al. (2014)
argued that the flexibility and transferability of a model cannot be clarified without evaluations over differ-
ent regions encompassing various land surface and climatic conditions. This highlights the need of assessing
any ET model's performance over multiple regions with hydroclimatic regimes that vary considerably. To
this end, an appropriate way of setting the value of the key parameter, the Priestley‐Taylor (PT) α
(Priestley & Taylor, 1972) of the CR, becomes vital for large‐scale model applications because it would be
particularly difficult to calibrate this parameter at a grid‐cell basis in continental‐ and/or global‐scale appli-
cations due primarily to the unavailability of measured ET data on a cell‐by‐cell basis (Ma et al., 2019).
Even if measured ET data from a limited number of locations were available for calibrating this model
parameter, it may not be directly transferable to other regions or temporal scales (Clark et al., 2017;
Samaniego et al., 2010; Zink et al., 2018). To avoid this problem, Szilagyi et al. (2017) proposed a method
of identifying wet cells in regional‐to‐continental‐scale grids of meteorological data for obtaining an
appropriate constant value of the PT coefficient without resorting to any ETmeasurements (or their proxies).
By inverting the Priestley‐Taylor equation over those wet cells, and having an estimate of the wet surface
temperature (Szilagyi, 2014), the PT α could be expressed with the help of temperature and humidity
gradients between the wet surface and the air, thus making such a CR model calibration‐free for
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estimating large‐scale ET. See the Appendix for a brief explanation of the CR theory and some of its histori-
cally widely used model versions.

While preliminary evaluations indicated that this calibration‐free CR model could, though with a mini-
mum number of input variables, yield ET estimates on a par with current LSM outputs (Szilagyi, 2018a,
2018b; Szilagyi et al., 2017), such a conclusion was based on an assessment of only one specific LSM product
within the North American Regional Reanalysis data (Mesinger et al., 2006). Therefore, it is not clear
whether this calibration‐free CR model would perform better (or worse) than other ET products
generated by (i) remote sensing (RS) models; (ii) atmospheric reanalysis; (iii) spatial upscaling of EC flux
tower measurements; and (iv) other LSMs, for example, those widely employed in the second phase of
the North American Land Data Assimilation System (NLDAS‐2; Xia et al., 2012). Additionally, the compar-
isons made by Szilagyi et al. (2017) focused mainly on the mean annual ET rates of the six‐digit Hydrologic
Unit Code (HUC6) basins, while the CR model's (in long‐term studies very important) ability to capture
tendencies (e.g., linear trends) in annual ET rates in a wide variety of climates of the conterminous
United States (CONUS) still remains largely unknown. In this context, a key question that needs also to
be addressed is how well current main‐stream ET products and also the CR are able to capture trends in
annual ET.

In this study, to fully test whether the latest calibration‐free CR model improves upon already existing ET
estimates across CONUS, long‐term (>30 years) water balance data from 18 two‐digit HUC (HUC2) and
334 HUC6 basins were employed to evaluate the CR model when run with monthly aggregated inputs
and to compare its performance to that of eight other ET products (i.e., three from LSMs, two from reanaly-
sis, two from RSmodels, and an upscaling of ECmeasurements). The comparisons are focused on their skills
in describing (i) the multiyear mean annual HUC2‐ and HUC6‐averaged ET rates, (ii) the linear trends in
their annual ET rates over the individual model coverage within the 37‐year period of 1979–2015, and (iii)
interannual variability of basin‐averaged ET rates during corresponding periods. A series of statistical
metrics were also applied to assess how the CR and the main‐stream ET models perform in simulating
large‐scale, long‐term ET rates over the CONUS.

2. Materials and Methods
2.1. Complementary Relationship‐Based ET Estimates for 1979–2015

The Szilagyi et al. (2017) formulation of Brutsaert's nonlinear CR model (2015) was employed for large‐scale
ET estimation across the CONUS, relating two dimensionless evapotranspiration terms in the form

y ¼ 2−Xð ÞX2 (1)

where y and X are defined as

X ¼ Emax
p −Ep

Emax
p −Ew

Ew

Ep
(2)

y ¼ E
Ep

(3)

Here E is the actual, while Ep is the potential ET rate, that is, the evapotranspiration rate of a small
wet patch in a drying (i.e., not fully wet) environment, typically expressed by the Penman (1948)
equation as

Ep ¼ Δ Rn−Gð Þ
Δþ γð Þ þ γf u e�−eð Þ

Δþ γð Þ (4)

where Δ (hPa/°C) is the slope of the saturation vapor pressure curve at air temperature, T (°C), and γ is the
psychrometric constant (hPa/°C). Rn and G are the net radiation and soil heat flux into the ground (the latter
typically negligible at a monthly scale) in water equivalent of mm/day, respectively. e* and e [=e*(Td)] are
the saturation and actual vapor pressure of the air (hPa), Td is the dew‐point temperature, and fu is the wind
function containing the 2‐m wind speed (u2; m/s), that is,
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f u ¼ 0:26 1þ 0:54u2ð Þ (5)

Ew is the wet‐environment ET rate, observed over a regionally extensive well‐watered surface, specified by
the Priestley‐Taylor equation (Priestley & Taylor, 1972), that is,

Ew ¼ α
Δ Twð Þ

Δ Twð Þ þ γ
Rn−Gð Þ (6)

Note that equation (6) was derived for completely wet environments by Priestley and Taylor (1972), and
therefore, Δ should be evaluated at the air temperature, Tw (°C), observed in a wet environment, instead
of the typical, drying environment T (Szilagyi, 2014; Szilagyi & Jozsa, 2008). This is important since previous
studies have found that the difference between these two may reach 5–10 °C (Huntington et al., 2011; Ma
et al., 2015; Ortman, 2009; Szilagyi, 2014). By making use of a mild vertical air temperature gradient
(de Vries, 1959; Szilagyi, 2014; Szilagyi & Jozsa, 2009) observable in wet environments (as Rn is consumed
predominantly by the latent and not by sensible heat flux), Tw can be approximated by the wet surface
temperature, Tws (°C). Note that Tws may still be larger than T when the air is close to saturation, but not
Tw, due to the cooling effect of evaporation, and in such cases Tw should be capped by T (Szilagyi, 2014;
Szilagyi & Jozsa, 2018). Szilagyi and Schepers (2014) demonstrated that the wet surface temperature is
independent of areal extent; thus, Tws can be obtained by iteration from the Bowen ratio (β; Bowen, 1926)
of a small wet patch (assuming that available energy for the wet patch is close to that of the drying surface)
for which the Penman equation is valid, that is,

β ¼ Rn−G−Ep

Ep
≈γ

Tws−T
e� Twsð Þ−e� Tdð Þ (7)

Here e*(Tws) is the saturation vapor pressure at Tws. Parameter α in equation (6) is the dimensionless
Priestley‐Taylor coefficient, with typical values from the range of [1.1–1.32] (Morton, 1983). For large‐scale
model applications when measured ET is lacking for the calibration of α, Szilagyi et al. (2017) proposed a
novel method (see Appendix for details) for assigning an appropriate value of α by automatically identifying
wet grid cells and utilizing observed gridded T and humidity data over them. The α value of 1.15 derived
by Szilagyi (2018b) for the conterminous United States was retained for the present CONUS‐wide
ET simulation.

Ep
max is the maximum value that Ep can, in theory, reach during a complete dry‐out (i.e., when ea is

negligible) of the land surface, that is,

Emax
p ¼ Δ Tdry

� �
Δ Tdry
� �þ γ

Rn−Gð Þ þ γ
Δ Tdry
� �þ γ

f u e
� Tdry
� �

(8)

in which Tdry (°C) is the dry‐environment air temperature. The latter can be estimated from the adiabat of an
air parcel in contact with the drying surface under constant Rn − G (Szilagyi, 2018a), that is,

Tdry ¼ Twb þ e� Twbð Þ
γ

(9)

where Twb (°C) is the wet‐bulb temperature. Twb is derived by another iteration of writing out the Bowen
ratio for adiabatic changes (Szilagyi, 2014) as

γ
Twb−T

e� Twbð Þ−e� Tdð Þ ¼ −1 (10)

Please refer to the Appendix for (i) a graphical illustration of the saturation vapor pressure curve,
and the different temperatures and related ET rates defined above; (ii) a brief historical description of
how the CR evolved into equation (1) over the past 40 years; (iii) plots of selected CR functions over
sample data; (iv) how assigning a value of α is performed without resorting to any calibration; and
(v) a pseudo‐algorithm.
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Equation (1) was applied in a continuous monthly simulation over the 37‐year period of 1979–2015 across
CONUS, employing the 4‐km spatial resolution Parameter‐Elevation Regressions on Independent Slopes
Model (PRISM; Daly et al., 1994) air and dew‐point temperature data. The 32‐km North American
Regional Reanalysis surface net radiation and 10‐m wind data (Mesinger et al., 2006) were linearly interpo-
lated onto the PRISM grid employing a power transformation (Brutsaert, 1982) of the 10‐mwind (u10) values
into u2 [=u10(2/10)

1/7], required by equation (5). The CR‐derived monthly ET rates were then aggregated
into annual sums for further evaluations.

2.2. Long‐Term Large‐Scale ET Products

Eight long‐term, publicly available ET products were selected to represent mainstream approaches in large‐
scale ET estimations, that is, LSMs, RS models, reanalysis, and spatial upscaling of EC measurements.
Table 1 provides an overview of the eight products, which includes the following.
2.2.1. LSM‐Based Products: Noah, VIC, and Mosaic
Three LSMs, Noah (Chen & Dudhia, 2001), VIC (Liang et al., 1994), and Mosaic (Koster & Suarez, 1996),
from NLDAS‐2 were selected to represent ET estimates from the LSMs. While these LSMs were developed
by different groups for use in global climate models, the underlying principle they calculate ET is essentially
the same. They all use a resistance‐type stress factor to adjust the Penman‐Monteith‐based (when surface
resistance is set to zero; Monteith, 1965) potential ET rate to represent actual ET. However, there are
substantial differences among the models in parameterizations of soil water flow, stomatal conductance,
root water uptake, etc., which all impact the estimated stress factor (Xia et al., 2016) in these LSMs
(see Figure 2 for the differences in LSM‐modeled ET rates).

All three LSMs are driven by NLDAS‐2 atmospheric forcing (air temperature, specific humidity, wind speed,
surface pressure, incoming solar and longwave radiation, and precipitation) at a spatial resolution of 0.125°
(Xia et al., 2012), which are derived primarily from identical forcing fields of North American Regional
Reanalysis data by the National Centers of Environmental Protection (NCEP), except for precipitation.
NLDAS‐2 precipitation comes from the NOAA Climate Prediction Center's 0.125° gauge‐based precipitation
analysis, with monthly PRISM adjustments for orographic impacts. The soil parameters for these LSMs are
determined by the global 1‐km hybrid State Soil Geographic Database (Miller & White, 1998). The ground
land cover classification for the NLDAS‐2 LSMs was based on the global, 1‐km vegetation database of the
University of Maryland (Hansen et al., 2010), which was retrieved from the advanced very high resolution
radiometer. For each 0.125° model cell, the vegetation field considers the relative frequency (RF) value
of each vegetation class established on the 1‐km resolution. Noah uses the predominant vegetation
class, while VIC and Mosaic use subgrid vegetation tiles weighted by the RF of the classes. Additional
vegetation greenness fractions were derived from the NOAA normalized difference vegetation index data
(Gutman & Ignatov, 1998) on a multiyear‐mean monthly basis without any interannual variation. For a
thorough introduction on NLDAS‐2 LSM forcing, parameters, configuration, and outputs, readers are
suggested to refer to https://ldas.gsfc.nasa.gov/nldas/NLDAS2model.php. In the present study monthly
ET rates from three NLDAS‐2 LSMs (Noah, VIC, and Mosaic) were employed for 1979–2015 in a spatial
resolution of 0.125°.
2.2.2. Reanalysis Products: NCEP‐II and ERA‐Interim
Reanalysis data are produced by a specific data assimilation scheme which combines various observations
(e.g., ground stations, aircrafts, and/or satellites) and forecast outputs from weather prediction models.
Two atmospheric reanalysis data, NCEP‐DOE (Department of Energy) Reanalysis 2 (NCEP‐II) and
ERA‐Interim, were selected in the present study. NCEP‐II (Kanamitsu et al., 2002) is an improved version
of the first global reanalysis data (i.e., NCEP‐I) released by NCEP‐NCAR (National Center for
Atmospheric Research), which fixes numerous problems occurring in the latter, although both are based
on the three‐dimensional variational data assimilation scheme. ERA‐Interim is a global atmospheric reana-
lysis produced by the European Centre for Medium‐Range Weather Forecasts (Dee et al., 2011), which used
the most advanced, that is, a four‐dimensional variational data assimilation, technique. Three‐dimensional
variational scheme treats observations that occur within a certain time interval around the target‐analysis
time as occurring simultaneously with the target time. Four‐dimensional variational one, however, uses
temporal weights of those near‐simultaneous measurements to estimate the target time value. Note that
while the spatial resolution of reanalysis data is usually coarse, that is, 2.5° for NCEP‐II and ~79 km for
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ERA‐Interim, they can, however, be produced in a near‐real‐time manner, supporting long‐term
hydroclimatic research. In the present study, monthly ET values from NCEP‐II and ERA‐Interim for
1979–2015 over the CONUS domain were employed.
2.2.3. RS‐Based Products: Global Land Evaporation Amsterdam Model and
Penman‐Monteith‐Leuning
The Global Land Evaporation AmsterdamModel (GLEAM;Miralles et al., 2011) is a two‐step method for the
estimation of ET, meaning that first the Priestley and Taylor (1972) potential ET rate is obtained which is
subsequently adjusted by the help of a stress factor. The latter is a function of root‐zone soil moisture and
vegetation optical depth and could be derived usingmicrowave satellite data. This model is actually designed
using remote sensing observations only, but can also be driven by reanalysis‐ or station‐based forcing to
extend its temporal coverage. In the present study GLEAM v3.2a ET product (Martens et al., 2017), covering
1980–2015 on a daily time step with a spatial resolution of 0.25°, was selected, driven by net radiation and air
temperature from ERA‐Interim plus the Multi‐Source Weighted‐Ensemble Precipitation data, and snow
water equivalent on top of the already mentioned inputs. The static input variables of GLEAM include
the ground cover fraction from the Moderate Resolution Imaging Spectroradiometer and the soil properties
from the Global Gridded Surfaces of Selected Soil Characteristics generated by the International Geosphere‐
Biosphere Program.

The Penman‐Monteith‐Leuning (PML) model combines a Penman‐Monteith‐type equation for plant
transpiration, the Leuning model for canopy conductance (Leuning et al., 2008), and the Priestley‐Taylor
equation for soil evaporation (Zhang et al., 2017). The global scale 0.5°, monthly PML ET product for
1981–2012 was then generated by Zhang et al. (2017) using the Princeton Meteorological Forcing
precipitation, air temperature, vapor pressure, shortwave and longwave downward radiation, wind speed
(Sheffield et al., 2006), and the leaf area index data derived from advanced very high resolution radiometer
normalized difference vegetation index (Zhu et al., 2013). The static land cover input for the PML model
was also from International Geosphere‐Biosphere Program. The PML‐obtained ET rates were constrained
by the Budyko framework using global streamflow observations at the mean annual scale to ensure an
internal water balance (Zhang et al., 2016). It should be mentioned that GLEAM and PML also partition
ET into its components (e.g., soil evaporation, plant transpiration), thus representing state‐of‐the‐art
RS‐based ET products.
2.2.4. Spatially Upscaled Eddy‐Covariance Measurement Product: FLUXNET‐MTE
FLUXNET‐MTE is a spatially upscaled ET product of global eddy‐covariance measurements using a
machine learning technique called model tree ensembles (MTE) (Jung et al., 2011). The MTE was trained
using 29 explanatory variables with measured flux data of 198 FLUXNET towers across a wide range of
biomes worldwide, which are mostly located in North America and Europe. FLUXNET‐MTE generated
a monthly, 0.5° latent heat flux data set for 1982–2011 over the continents. Inputs of the model comprise
of (i) the fraction of absorbed photosynthetic active radiation derived from merged remote sensing products
of Global Inventory Modeling and Mapping Studies, Sea‐viewing Wide Field‐of‐view Sensor, and Moderate
Resolution Imaging Spectroradiometer; (ii) meteorological data from the Climatic Research Unit and the
Global Precipitation Climatology Centre; and (iii) a land cover data fused from multiproducts called
SYNMAP (Jung et al., 2006). It should be noted that although nearly 30 predictor variables were used to train
the MTE, most of them did not vary interannually. Therefore, the FLUXNET‐MTE product tends to

Table 1
Basic Information of Eight ET Products Used for Comparisons in This Study

ET products Category Spatial resolution Temporal resolution Temporal coverage References

Noah Land surface model 0.125° 3 hr, monthly 1979–2015 Xia et al. (2012)
VIC Land surface model 0.125° 3 hr, monthly 1979–2015 Xia et al. (2012)
Mosaic Land surface model 0.125° 3 hr, monthly 1979–2015 Xia et al. (2012)
NCEP‐II Reanalysis 2.5° 24 hr, monthly 1979–2015 Kanamitsu et al. (2002)
ERA‐Interim Reanalysis T255 (~79 km) 6 hr, monthly 1979–2015 Dee et al. (2011)
GLEAM Remote sensing model 0.25° Daily 1980–2015 Martens et al. (2017)
PML Remote sensing model 0.5° Monthly 1981–2012 Zhang et al. (2017)
FLUXNET‐MTE Upscaling of EC measurements 0.5° Monthly 1982–2011 Jung et al. (2011)
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underestimate the interannual variability of ET (Jung et al., 2011) that translates into subdued linear trend
values (seen later).

2.3. Water‐Balance‐Derived ET of the HUC2 and HUC6 Basins Across CONUS

For a standard geographical framework for hydrological research and water resource management, the
United States Geological Survey divides the country into successively smaller hydrological units with a
unique “hydrological unit code” (HUC; Seaber et al., 1987) identifier. The CONUS has 18 first‐level two‐digit
(i.e., HUC2) hydrological units (Figure 1), which comprise either the drainage area of a major river
(e.g., Missouri region) or the combined drainage areas of a series of rivers (e.g., Texas‐Gulf region). These
HUC2 basins are also further divided into 204 second‐level four‐digit (i.e., HUC4) and 334 third‐level six‐digit
basins (i.e., HUC6) based on surface topography (Seaber et al., 1987; Figure 1). In the present study, all
(except the CONUS averagedmean annual ET rates of Figure 2) evaluations are based on basin‐wide ET rates
averaged over either HUC2 or HUC6 basins.

Basin‐scale water‐balance‐based evapotranspiration rates (ETwb) can be derived by

ETwb ¼ P−Q−δS (11)

where P, Q, and δS are the basin‐wide precipitation, stream discharge/runoff, and the changes in terrestrial
water storage, respectively. The last term of equation (11) represents the combined changes of water storage
in the soils, groundwater, open water bodies, and the snow/ice system, and usually considered small enough
to be ignored at an annual (or longer) scale (Senay et al., 2011), that is,

ETwb≈P−Q (12)

Equation (12), however, may not be accurate for smaller basins affected by significant (i) interbasin water
exchanges (Szilagyi & Jozsa, 2018) and/or (ii) reservoir regulations of large (relative to mean flow)
storage volumes (Han et al., 2015). While the Gravity Recovery and Climate Experiment (GRACE) data
(Tapley et al., 2019) enable the community to estimate basin‐scale δS in equation (11), its available time‐
coverage (i.e., 2002–2017) is too short to allow for a reliable estimation of the HUC2/HUC6 mean annual
ETwb values and especially for the estimation of long‐term tendencies; therefore, equation (12) was
employed for the 1979–2015 period in addition to equation (11) for the 2003–2015 time period.

Annual δS in the present study was calculated as the difference in terrestrial water storage anomaly of
successive Decembers, the latter taken as the arithmetic average of three GRACE products processed by
Geoforschungs Zentrum Potsdam; by the Center for Space Research at the University of Texas, Austin;
and by the Jet Propulsion Laboratory in Pasadena, CA, after applying the relevant gain factors for each type
of data (Landerer & Swenson, 2012). The monthly P and Q data came from PRISM precipitation (version
AN81m; Daly et al., 1994) and United States Geological Survey runoff (at both HUC2 and HUC6 scales)
records (Brakebill et al., 2011) for 1979–2015. Altogether seven HUC6 basins (Figure 1) were removed
(about 2% of all HUC6 basins) from the analysis because their ETwb values were outliers from similar values
in their neighborhood.

Because of a considerable difference that exists in the spatial resolutions of the selected ET products,
including the CR‐based estimates, all ET data (also the PRISM P and GRACE‐derived δS values) were first
resampled into a common 0.125° grid using the nearest‐neighbor method, followed by a spatial averaging
to calculate basin‐wide ET (as well as P and δS) rates for each HUC2 and HUC6 units (see below).

The performance of the nine ET products was measured by the (i) Pearson correlation coefficient (R), (ii)
root‐mean‐square error (RMSE), (iii) relative bias (RB), (iv) ratio of standard deviations (SR) in modeled
and water‐balance derived values, and (v) Nash‐Sutcliffe efficiency (NSE) against water‐balance derived
ETwb rates for 18 HUC2 and 327 HUC6 basins. The comparisons involved the multiyear mean annual ET
rates and the sum‐of‐squares‐fitted linear trends in annual ET for the available data periods (see Table 1)
of the ET products, and separately for the overlapping period of the GRACE data and the given ET product.
In addition, the same performance measures were calculated for the annual ET time series of the 18 HUC2
basins to assess how the models capture interannual variability.
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3. Results
3.1. Spatial Pattern of the Multiyear Mean Annual ET From CR and Eight Other Products

There is no considerable difference in the spatial pattern of multiyear mean annual ET values among
seven products (without VIC and NCEP‐II), all generally displaying lower ET rates over the arid regions
in the western CONUS and higher values in the humid regions of the southeastern CONUS (Figure 2).
However, it seems that VIC simulates particularly low values over most parts of the eastern CONUS, while
NCEP‐II does the opposite. A country‐averaged multiyear mean annual ET comparison indeed yields the
highest value for NCEP‐II with 838 ± 60 mm/year (mean ± standard deviation), which is followed by
ERA‐Interim (653 ± 28 mm/year) and Mosaic (625 ± 23 mm/year), while VIC yields the smallest ET rate
of only 435 ± 14 mm/year (Figure 2). CR yields 534 ± 19 mm/year, which is close to GLEAM's 530 ± 17
mm/year, both are “in the middle” ET rates when comparing all model values. As seen, FLUXNET‐MTE
displays the lowest interannual variations (10 mm/year) among all the models, mainly because the great
majority of the explanatory variables used to train the MTE was assumed static over the years, thereby lead-
ing to the observed decreased interannual variability (Jung et al., 2011), which then probably also translates
to reduced spatial variance of the resulting ET rates, seen later.

Figure 1. Distribution of the (a) 18 HUC2 and (b) 334 HUC6 basins across the conterminous United States. The
green‐colored HUC6 basins yielded outlying ETwb values and were left out of the analysis. The names of the 18
HUC2 basins are 01 = New England, 02 = Mid‐Atlantic, 03 = South Atlantic‐Gulf, 04 = Great Lakes, 05 = Ohio, 06
= Tennessee, 07 = Upper Mississippi, 08 = Lower Mississippi, 09 = Souris‐Red‐Rainy, 10 = Missouri, 11 = Arkansas‐
White‐Red, 12 = Texas Gulf, 13 = Rio Grande, 14 = Upper Colorado, 15 = Lower Colorado, 16 = Great Basin, 17 =
Pacific Northwest, 18 = California.
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3.2. Basin‐Scale Evaluation of the Multiyear Mean Annual ET Rates

The water‐balance‐based (equation (12)) multiyear mean annual ET rates (ETwb) for the HUC2 basins are
displayed in Figure 3. Not surprisingly, the Great Basin (#16; see Figure 1) and the Lower Colorado (#15)
are the driest (ETwb = 260–305 mm/year, respectively) while the South Atlantic‐Gulf (#03) and Lower
Mississippi (#08) the wettest (ETwb = 920–960 mm/year, respectively) HUC2 basins. Figure 4 displays the
evaluations of the multiyear mean annual ET estimates against the water‐balance‐based values over the
18 HUC2 basins for each product, with error bars denoting the interannual variability. Note that the
averaging periods throughout the study follow the temporal coverage of the corresponding products
(Table 1). While the multiyear mean annual values are not sensitive to the changes in the averaging periods
(see Table S1), the trend values, calculated later, are.

In comparison with ETwb, the CR performs the best in estimating the multiyear mean annual ET rate of the
HUC2 basins with a NSE value of 0.94 and RMSE value of 51.2 mm/year (Figure 4 and Table 2). FLUXNET‐
MTE and other two RS models (i.e., GLEAM and PML) also have NSE values larger than 0.86 and RMSE
values smaller than 77 mm/year. Among the LSMs, Noah (NSE = 0.75) appears to produce more accurate
ET rates (with the highest R = 0.99 value, surpassing the CR model's R = 0.98 value) than VIC or Mosaic.
The worst skill occurs in NCEP‐II, which significantly overestimates ETwb rates in all basins, thus
being the only model with a negative NSE value (−1.47). Another reanalysis product, ERA‐Interim
(NSE = 0.55), has a very similar performance to that of Mosaic (NSE = 0.65).

Figure 5 illustrates the spatial pattern of the ratio of multiyear mean HUC2‐averaged ET from nine products
to water‐balance derived ETwb across CONUS. It can be seen that the errors of CR are within ±10% for most
HUC2 basins with the largest exception for the Lower Colorado (#15). Noah and VIC generally underesti-
mate the multiyear mean annual ET rates over almost all basins, with the most significant bias observed

Figure 2. (a–i) Spatial distribution of the modeled multiyear mean annual ET rates (mm/year) and (j) their CONUS‐averaged values (plus/minus standard
deviation).
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in California and in the southeastern CONUS, respectively. On the contrary, Mosaic overestimates ET in
most basins except for the Lower Colorado and Rio Grande, with the largest positive bias found in the
Pacific Northwest (#17) and Great Lakes (#04). A positive bias of varying degree exists in all basins in the
ERA‐Interim data. The two RS models, PML and GLEAM, succeed the best [SR values of 0.98 and 1.01
(Figure 4 and Table 2), respectively], while VIC and FLUXNET‐MTE the worst, in replicating the spatial

Figure 3. Spatial distribution of the water‐balance derived multiyear (1979–2015) mean annual HUC2 ETwb rates
(mm/year).

Figure 4. Regression plots of the HUC2‐averaged multiyear mean annual ET rates of the nine ET products against
water‐balance ETwb data. The period for calculating multiyear mean values of ETwb follows the one in parenthesis
for each product. The length of the whiskers denotes the standard deviation of the basin‐averaged annual ET values
during corresponding periods. The strips around the fitted lines (red) denote the 95% confidence intervals and the long
blue line represents a 1:1 relationship.
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variance found in the HUC2‐averaged ETwb multiyear means. GLEAM has an obvious positive bias in the
Pacific Northwest (#17), similar to Mosaic.

When switching to the GRACE period of 2003–2015 for inclusion of the δS values, CR still produces the
highest NSE (0.94) and lowest RMSE (54.2 mm/year) values (Table 2) for the HUC2 basins, followed by
FLUXNET‐MTE (0.92 and 60.1 mm/year) and GLEAM (0.89 and 72 mm/year). NCEP‐II (RB = 64%),
ERA‐Interim, and Mosaic (for both, RB = 17%) still overestimate the water‐balance derived ETwb values,

Table 2
Performance Statistics of the Modeled Multiyear Mean Annual ET Rates for the Full and GRACE Periods of the 18 HUC2 and 327 HUC6 Basins Across CONUS

Category Periods Products

HUC2 HUC6

R RMSE RB SR NSE R RMSE RB SR NSE

Full period 1979–2015 CR 0.98 51.2 −1 109 0.94 0.93 89 2 104 0.86
Noah 0.99 104 −17 95 0.75 0.96 116 −16 93 0.76
VIC 0.97 154 −21 59 0.46 0.90 177 −21 63 0.45

Mosaic 0.95 123 16 121 0.65 0.92 140 16 111 0.66
NCEP‐II 0.92 329 53 138 −1.47 0.81 353 50 134 −1.19

ERA‐Interim 0.96 139 21 115 0.55 0.91 171 22 111 0.48
1980–2015 GLEAM 0.94 74.6 −1 101 0.87 0.88 116 0 97 0.76
1981–2012 PML 0.97 76.4 −10 98 0.87 0.95 90.1 −8 98 0.86
1982–2011 FLUXNET‐MTE 0.97 65.1 −7 88 0.90 0.95 85.2 −6 85 0.87

GRACE period 2003–2015 CR 0.98 54.2 −1 114 0.94 0.94 91 1 109 0.85
Noah 0.99 97.1 −16 96 0.79 0.96 110 −15 95 0.79
VIC 0.96 146 −20 62 0.53 0.89 170 −20 65 0.49

Mosaic 0.95 131 17 123 0.62 0.92 147 17 113 0.62
NCEP‐II 0.91 387 64 143 −2.31 0.80 407 60 137 −1.92

ERA‐Interim 0.97 120 17 116 0.68 0.91 156 18 112 0.57
GLEAM 0.94 72 0 101 0.89 0.88 116 1 99 0.76

2003–2012 PML 0.97 75.7 −10 95 0.87 0.94 91.7 −7 98 0.85
2003–2011 FLUXNET‐MTE 0.97 60.1 −5 88 0.92 0.95 80 −4 87 0.88

Note. The units of RMSE, RB, and SR are mm/year, %, and %, respectively; R and NSE are dimensionless. Outstanding values in each category are emphasized.

Figure 5. Spatial distribution of the ratio of multiyear mean annual HUC2‐averaged modeled ET to ETwb rates. In each panel, the period for calculating the
multiyear mean values of ETwb follows that of the corresponding ET product.
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while VIC (RB = −20%) and Noah (RB = −16%) underestimate them. The two models most on target with
their ET estimates are GLEAM (RB= −1% for 1980–2015 and RB = 0% for 2003–2015) and CR (RB =−1% in
both cases), while the spatial variance is also reproduced the best by GLEAM (SR = 1.01) and the worst by
VIC and FLUXNET‐MTE (Table 2).

The water‐balance derived (equation (12)) multiyear mean annual ET rates (ETwb) for the HUC6 basins are
displayed in Figure 6.While the wettest HUC6 basins (ETwb > 1,000mm/year) are found within the twowet-
test HUC2 basins, that is, the South Atlantic‐Gulf (#03) and Lower Mississippi (#08), the driest (ETwb < 100
mm/year) basins are found in the California (#18) HUC2 basin.

For the HUC6 basins the FLUXNET‐MTE ET rates exhibit the highest NSE value of 0.87 (Figure 7 and
Table 2), closely followed by those of CR and PML (NSE = 0.86 for both). The RMSE is the smallest also
for FLUXNET‐MTE (85.2 mm/year) followed by CR (89 mm/year) and PML (90.1 mm/year) again. For
relative bias, GLEAM and CR have the smallest values (0% and 2%, respectively), followed by FLUXNET‐
MTE with −6%. The R value is the highest though for Noah (0.96), followed by FLUXNET‐MTE and
PML (both of 0.95). The worst performer is NCEP‐II with the only negative NSE value and a significant
overestimation, yielding an RB value of 50% (Figure 7). VIC and ERA‐Interim are also among the worst per-
formers with a significant underestimation (RB =−21%) and overestimation (RB= 22%), leading to the low-
est positive NSE values of 0.45 and 0.48, respectively (Figure 7). The spatial variance is best captured by the
two RS models (PML and GLEAM) plus CR with SR values of 0.98, 0.97, and 1.04, respectively (Table 2).

Again, by switching to the GRACE period for using equation (11), there is no change in the best NSE and
RMSE performance order among FLUXNET‐MTE, CR, and PML (Table 2). For RB, GLEAM and CR yield
the same 1% value. The order for the highest R values remains the same as before; however, CR comes up
to the level of PML with an R value of 0.94. NCEP‐II performs even worse than before, while VIC and
ERA‐Interim both improve a bit. For reproducing spatial variability both RS models continue to dominate
with the highest SR.

Figure 8 presents how the different models predict the multiyear mean annual ET rates of the individual
HUC6 basins in a spatially referenced manner. As seen, three models, CR, GLEAM, and FLUXNET‐MTE,
yield a similar spatial pattern in the modeled ET rates, relative to ETwb values. All of them tend to overesti-
mate ETwb in the northwestern and underestimate it in the southwestern CONUS. Mosaic and ERA‐Interim
overestimate ETwb in the majority of the HUC6 basins, while NCEP‐II seriously overestimates it in almost
every basin. The most serious underestimation of ETwb at differing locations can be seen in the CR, Noah,
and VIC models.

3.3. Spatial Pattern of the Trends in Annual ET Rates From CR and Eight Other Products

While not all products (mainly PML and FLUXNET‐MTE) cover the full period of 1979–2015, almost all pro-
ducts demonstrate that annual ET increased over the majority of the upper north‐eastern third of the
CONUS, while decreasing trends dominated the western parts (Figure 9). Note again that the trend of a
given product is for the period it covers, displayed in Figure 9. It appears that the trends in the reanalysis
products, NCEP‐II and ERA‐Interim, may be unreasonably strong when compared with other products
(i.e., the increasing trends in the former and the decreasing ones in the latter). The spatial pattern of the
trends from the CR are generally consistent with those of LSMs (Noah, VIC, Mosaic) over most regions,
except for the South Atlantic‐Gulf HUC2 (#03) basin (e.g., Florida, Georgia, and Alabama) where the CR
displays significant increasing trends but the LSMs do not, although GLEAM, PML, and FLUXNET‐MTE
(even with a shortened modeling period) do so as well. Similarly, in most parts of California the CR‐derived
ET rates display significant decreasing trends, less apparent in other model outputs, except ERA‐Interim.

3.4. Basin‐Scale Evaluation of the Trends in Annual ET Rates

For every HUC2/HUC6 basin, a linear trend in the basin‐averaged annual ETwb values is calculated for
the data coverages of the different ET products and also for their overlap with the GRACE period
(2003–2015). Figure 10 displays the spatial distribution of the resulting linear tendencies in annual
ETwb over 1979–2015 for the 18 HUC2 basins. West of the Lower Mississippi (#08) and Missouri (#10)
HUC2 basins the tendencies are negative, with the largest ones (between −2 and −2.5 mm/year) found
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Figure 6. Spatial distribution of the water‐balance derived multiyear (1979–2015) mean annual HUC6 ETwb rates (mm/
year).

Figure 7. Regression plots of the HUC6‐averaged multiyear mean annual ET rates of the nine ET products against water‐
balance ETwb data. The period for calculating multiyear mean values of ETwb follows the one in parenthesis for each
product. The strips around the fitted lines (red) denote the 95% confidence intervals and the long blue line represents a 1:1
relationship.
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in California (#18) and the Lower Colorado (#15), while the largest positive trend (2.3 mm/year) is found
in the South‐Atlantic Gulf (#03) basin.

The evaluations of the modeled linear trends at the HUC2‐basin scale are presented in Figures 11 and 12 as
well as in Table 3. It can be seen that the CR captures the trends most effectively among all the models
and model periods considered; that is, CR produces the highest NSE (0.80), R (0.91), and the lowest RMSE

Figure 8. Spatial distribution of the ratio of multiyear mean annual HUC6‐averaged modeled ET to ETwb rates. In each panel, the period for calculating the multi-
year mean values of ETwb follows that of the corresponding ET product.

Figure 9. Spatial distribution of the linear tendencies (mm/year) in annual ET sums of the nine different ET products considered. The stippling denote trends that
are statistically significant (p < 5%) in the Student's t test.
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(0.63 mm/year) values for the period of 1979–2015. Note the large uncertainty in the water‐balance‐derived
trend values (long horizontal whiskers in Figures 11 and 12). Unlike for mean annual ET rates, VIC and
Noah also perform relatively well in the estimation of the trends with NSE values of 0.74 and 0.63, respec-
tively. The largest errors are found in the two reanalysis, NCEP‐II and ERA‐Interim, data (Figure 11 and
Table 3), leading to negative NSE values (Figure 11). Note that ERA‐Interim is the only product that yields
decreasing trends in most basins of the eastern CONUS, contrary to what is observed in ETwb data
(Figures 10 and 13). Among the RS models, GLEAM and PML provide reasonable estimates for the
trends in annual ET; however, the former predicts a very narrow range for the trends in the HUC2
basins (see Figure 12 and SR = 0.49 in Table 3), similar to that of FLUXNET‐MTE, this latter one due, most
probably, to its underestimation of the interannual variability of the ET values (see section 3.5). When

Figure 10. Spatial distribution of the linear tendencies (mm/year) in annual ETwb sums during 1979–2015 for the HUC2
basins.

Figure 11. Regression plots of the linear trend values (mm/year) in modeled HUC2‐averaged annual ET sums against
those in ETwb over 1979–2015. The length of the whiskers denotes the standard error in the estimated slope value. The
strips around the fitted lines (red) denote the 95% confidence intervals and the long blue line represents a 1:1 relationship.
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Figure 12. Regression plots of the linear trend values (mm/year) in GLEAM‐, PML‐, and FLUXNET‐MTE‐modeled HUC2‐averaged annual ET sums against those
in ETwb over the different model periods (shown in parenthesis). For comparison, regressions for the CR ET values over the same periods are also displayed. The
length of the whiskers denotes the standard error in the estimated slope value. The strips around the fitted lines (red) denote the 95% confidence intervals and the
long blue line represents a 1:1 relationship.

Table 3
Performance Statistics of the Linear Trend Values in Modeled Annual ET Rates for the Full and GRACE Periods of the 18 HUC2 and 327 HUC6 Basins Across CONUS

Category Periods Products

HUC2 HUC6

R RMSE RB SR NSE R RMSE RB SR NSE

Full period 1979–2015 CR 0.91 0.63 −101 87 0.80 0.58 1.63 −43 66 0.32
Noah 0.85 0.86 −114 62 0.63 0.6 1.62 −124 56 0.32
VIC 0.88 0.72 −85 77 0.74 0.64 1.53 −83 61 0.40

Mosaic 0.79 1.05 −221 94 0.44 0.58 1.84 −242 85 0.13
NCEP‐II 0.76 3.76 1300 194 −6.08 0.49 4.35 −1134 164 −3.84

ERA‐Interim 0.71 2.36 −814 118 −1.78 0.4 2.88 −655 99 −1.12
1980–2015 CR 0.92 0.64 −70 88 0.83 0.61 1.66 −20 67 0.36

GLEAM 0.9 0.93 −87 49 0.62 0.61 1.7 −71 45 0.34
1981–2012 CR 0.85 1 65 100 0.63 0.51 2.19 92 73 0.11

PML 0.89 1.16 121 77 0.51 0.59 2.11 113 70 0.17
1982–2012 CR 0.78 1.09 55 99 0.53 0.41 2.35 98 69 0.02

FLUXNET‐MTE 0.85 1.22 98 39 0.41 0.51 2.21 105 31 0.13

GRACE period 2003–2015 CR 0.61 2.49 −45 108 0.07 0.47 5.36 −64 59 0.14
Noah 0.51 3.29 −124 105 −0.62 0.29 6.85 −130 74 −0.41
VIC 0.53 3.16 −110 109 −0.49 0.3 6.63 −113 73 −0.32

Mosaic 0.45 4.71 −186 155 −0.23 0.25 8.67 −174 114 −1.26
NCEP‐II 0.3 6.21 −137 233 −4.78 0.17 9.36 −129 134 −1.63

ERA‐Interim 0.6 4.3 −223 108 −1.77 0.25 7.39 −172 69 −0.64
GLEAM 0.64 2.46 −80 91 0.09 0.5 5.41 −85 54 0.12

2003–2012 CR 0.77 7.58 −223 67 0.22 0.66 10.55 −205 59 0.13
PML 0.55 7.29 −60 55 0.28 0.46 10.33 −75 53 0.17

2003–2011 CR 0.82 4.62 −253 91 0.58 0.64 9.53 −1650 69 0.34
FLUXNET‐MTE 0.88 4.66 3 44 0.58 0.64 9.47 −313 39 0.35

Note. The units of RMSE, RB, and SR are mm/year, %, and %, respectively; R and NSE are dimensionless. Outstanding values in each category are emphasized.
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considering the three products that do not cover the full range of 1979–2015 (Figure 12), the CR yields better
performance in every (exceptR) statisticalmeasure (Table 3) employed. In themodel evaluation of trends,RB
should not be weighed heavily since the denominator may be very small if ETwb demonstrates little change
over a given period.

The linear trend estimates really deteriorate for the GRACE period (Figures S1 and S2 and Table 3) due pri-
marily to the shortness (13 years altogether at best, but only 9 years for FLUXNET‐MTE and 10 years for
PML) of the periods (notice the enlarged horizontal whiskers in the ETwb trend estimates of Figures S1
and S2 in comparison with those in Figures 11 and 12). Note that only the CR and GLEAM produce (similar)
positive NSE values for the 13‐year period, and also the smallest RMSE and largest R values. For the even
shorter periods in Figure S2, there is not much difference between the models.

Figure 13 displays the spatial distribution of the HUC6 linear trend values during 1979–2015 found in the
water‐balance derived annual ETwb rates. It can be seen that most of the trends in the annual HUC6‐
averaged ETwb are within the [−4–4 mm/year] interval. The largest positive trend (8.6 mm/year) again
is found for a HUC6 watershed within the South Atlantic Gulf (#03) HUC2 basin, while the opposite
(−7.6 mm/year) in the Pacific Northwest (#17) HUC2 basin. In addition, ETwb rates of certain HUC6
basins in the coastal regions of California and in southern Arizona decreased the most significantly.

From Figures S3 and S4 and Table 3 it becomes clear that the skill of all products in predicting the water‐
balance derived trend deteriorates significantly due to the large uncertainty in the HUC6 water‐balance‐
obtained trends caused by large interannual variability in the data. The resulting whiskers are particularly
long and the number of data points is so numerous that displaying these uncertainties became impossible
in these graphs. The largest NSE (0.4) and the smallest RMSE (1.53 mm/year) values are provided by VIC,
followed by an overall equal performance by Noah and CR (0.32 and 1.6 mm/year, respectively) for the
1979–2015 period (Figure S3 and Table 3). Similar to HUC2‐basin performance, the reanalysis models also
end up with negative NSE values for the HUC6 basins. For the shortened periods (Figure S4), the CR and
the relevant models (GLEAM, PML, FLUXNET‐MTE) behave about the same during the corresponding
periods. With regard to the whole GRACE period of 2003–2015, only the CR and GLEAM could produce
positive NSE values of 0.14 and 0.12 (Table 3), respectively; while for the shortened GRACE periods the
models involved perform about the same again for the HUC6 basins (Table 3).

3.5. Basin‐Scale Evaluation of the Temporal Variations of Annual ET Rates

In order to understand better how the different ET models capture interannual variability (IAV) of the ET
values, annual time series from the nine ET products plus that of ETwb are displayed in Figures S5 and S6
for each HUC2 basin and each period considered. As expected, ETwb in general display reduced variability
for the GRACE period due to changes in annual water storage. As seen, FLUXNET‐MTE data displays by far
the smallest IAV. While all ET products fail to reproduce the IAV of ETwb in the eastern part of CONUS

Figure 13. Spatial distribution of the linear tendencies (mm/year) in annual ETwb sums during 1979–2015 for the HUC6
basins.
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(i.e., left column), it appears that most of them show a more comparable IAV to that of ETwb in the gener-
ally more arid western part of the CONUS (i.e., right column). When averaged for all 18 HUC2 basins and
over all periods, the mean SR values of most ET products are similar (50–70%)—with the best performing
model being Mosaic (SR = 76%)—except for NCEP‐II which significantly overestimates the IAV of ETwb
(Figure S7), and FLUXNET‐MTE doing the opposite.

Figure S7 and Table S2 also display additional model skills in simulating temporal variations in HUC2 basin
annual ET rates. As seen, the CR produced the smallest period‐combined RMSE (71 mm/year) and largest
NSE (−0.24%) values in comparison with the other eight products. Note that for NSE the median was com-
puted instead of the arithmetic average due to frequently observed large negative values in individual HUC2
basins which happens when the mean of model ET differs significantly from water‐balance one. Noah
yielded the highest overall R value (0.58), while GLEAM and CR succeeded the most (RB of −0.3% and
−3%, respectively) with being on target with the HUC2‐basin model‐ET means.

4. Discussions

While the water‐balancemethod is often regarded themost accurate avenue for deriving basin‐scale ET rates
(Liu et al., 2016), the uncertainties in such “ground‐truth” data are not negligible. First, although the subsur-
face leakage to adjacent basins should be minimal for HUC2 basins, this may not be true for all HUC6 basins
(e.g., in the Sand Hills of Nebraska) whose mean area are only approximately 23,000 km2 (Bleed &
Flowerday, 1989). Besides, in watersheds with an obvious trend in the stored water (e.g., due to groundwater
pumping) volumes, equation (12) may be inaccurate. Similarly, large‐capacity water storage reservoirs may
disturb the annual water balance on smaller watersheds. Second, the United States Geological Survey runoff
value for each hydrological unit was generated by weighting the stream discharge data collected at HUC8
stream gauges with the corresponding drainage area and subsequently averaging the so‐derived values over
the (i.e., HUC6 or HUC2 in our case) basins (Brakebill et al., 2011). Although this data set is regarded as a
close surrogate of the natural runoff in hydroclimate studies (Ashfaq et al., 2013; Szilagyi, 2018a), those
basins with relatively few discharge gauging stations may be less reliable. Note also that water transfer
between watersheds is not always negligible, see, for example, the Colorado River water transfer into
California (Hanak et al., 2011).

Third, PRISM precipitation data (Daly et al., 1994) may not be perfectly appropriate for computing long‐term
tendencies for a given location (or grid cell) since certain stations experienced location and/or equipment
changes, which may potentially lead to inhomogeneity in the time series of the data in that location/cell.
This effect however vanishes for the HUC2 and most likely for the majority of the HUC6 basins as well,
because such changes can affect only basins with very few precipitation stations. Fourth, the original spatial
resolution of GRACE plus the nine ET products differ significantly (range of 0.125° to 2.5°). Accuracy of the
basin‐wide ET estimates therefore may deteriorate to some extent over small watersheds. For this reason,
basin‐wide ETwb and modeled ET rates may be more reliable for HUC2 than for HUC6 basins. In general,
future detailed studies on the accuracy of long‐term, multi‐level basin‐wide P,Q, and δS could benefit a com-
prehensive evaluation of the large‐scale ET products.

It should be noted that the accuracy of any ET product is highly dependent on the quality of inputs used to
drive the model. With regard to the eight ET products considered in the present study, only Noah, VIC, and
Mosaic from NLDAS‐2 were intended exclusively for the CONUS where high‐resolution, more reliable
atmospheric forcing, soil and vegetation data could be obtained (Xia et al., 2012), while the other five ET pro-
ducts cover the whole globe with a limited number of available atmospheric forcing and soil/vegetation
property data sets. For example, atmospheric forcing of the GLEAM v3.2a product (Martens et al., 2017)
includes precipitation from the Multi‐Source Weighted Ensemble Precipitation data set (Beck et al., 2017)
together with air temperature and radiation data from the ERA‐Interim reanalysis (Dee et al., 2011). It is
therefore believed that the quality of such global forcing is not as high as those developed exclusively for
the CONUS, that is, PRISM temperature and precipitation data. Note that while NLDAS‐2 LSMs were driven
by better atmospheric forcing and soil/vegetation data across the CONUS (Xia et al., 2012), they did not show
much improved skills in comparison with GLEAM, PML, and FLUXNET‐MTE, indicating great challenges
due to not only parameter uncertainties (Clark et al., 2017; Mendoza et al., 2015; Mölders, 2005) but also the
representation of various physical processes related to ET, such as vegetation dynamics (Ma et al., 2017),
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surface exchange coefficients (LeMone et al., 2008), and root water uptake (Wang et al., 2018), which would
potentially be upgraded in future NLDAS LSMs (Xia et al., 2016). Finally, most LSMs and reanalysis pro-
ducts do not consider anthropogenic activities such as agricultural irrigation, which may impact both regio-
nal ET and precipitation to a large extent (Szilagyi, 2018a; Szilagyi & Jozsa, 2018).

5. Summary and Conclusions

This study evaluated the performance of the latest calibration‐free CRmodel together with eight other main‐
stream methods (LSMs, RS‐based models, reanalysis products, and a spatial upscaling of eddy‐covariance
measurements) of estimating monthly ET rates and their multiyear linear tendencies with the help of
water‐balance‐derived annual ET rates (ETwb) over 18 HUC2 and 327 HUC6 basins within the CONUS.

At the HUC2 basin level where the ETwb estimates are expected to bemore accurate (due to a higher number
of precipitation stations, more accurate discharge measurements in larger rivers, and a smaller relative effect
of any possible interbasin water transfers and/or reservoir regulations on the water balance), the CR pro-
duced the highest NSE and best RMSE values among the nine products for the multiyear mean annual ET
rates, independent of the different evaluation periods (due to somewhat different data coverage among mod-
els). The CR's RB value was matched/exceeded only by GLEAM, the latter also excelling in SR. Similarly, the
CR's (spatial) R value was only surpassed by Noah. Still at the HUC2 level, the CR produced the highest R
and NSE values together with the best RMSE for the periods considered in the estimation of the linear ten-
dencies in annual ET rates. In the RB value FLUXNET‐MTE excelled, followed by the CR, while in the SR
value Noah and CR did so.

At the HUC6 level where the water‐balance derived ET rates are less reliable for the above reasons, all mod-
els' performance worsened. For the mean annual values FLUXNET‐MTE achieved the highest NSE and best
RMSE values closely followed by CR and PML, in that order. The RB value of GLEAM reflected almost per-
fectly unbiased estimates, again closely followed by CR. In the R value Noah excelled, followed by
FLUXNET‐MTE, PML, and CR, in that order. However, SR was the best for PML and GLEAM in both full
and GRACE periods, followed by CR. For the linear tendencies all model‐performance measures further
declined. Yet the CR managed to produce the lowest RB and the best RMSE values overall. CR, VIC, and
FLUXNET‐MTE produced about the same R values, while CR together with VIC and GLEAM showed com-
parableNSE values during the full period. The SR value was the best for ERA‐Interim andMosaic for the full
and GRACE period, respectively.

Trend‐performance statistics are sensitive to the actual data period (especially if the number of data points is
low) when the fitting is performed in the typical least sum‐of‐square‐sense (employed here too), as such fit-
ting is not robust (well known in statistics) since outliers exert a disproportionally large weight in the fitting
process making it sensitive to such values and errors in the data. Note that here trends served as another tool
of comparing model performance, and not the focus of analysis of this study.

Among the models and periods considered CR, GLEAM, PML, and FLUXNET‐MTE never produced any
negative value for the spatial NSE.

When the combined (i.e., for full and GRACE periods) performance statistics of the modeled annual ET time
series of the 18 HUC2 basins are considered (Table S2) then CR excelled in RMSE and NSE, GLEAM in RB,
Noah in R, and Mosaic in SR. Only VIC and PML never excelled in any category.

It can be stated that altogether the CR outperformed all other models (even the one which utilizes measured
ET fluxes) considered in this study for the estimation of the multiyear mean annual ET value and linear ten-
dency in the annual values at the HUC2 level across the CONUS and was only outdone by FLUXNET‐MTE
at the HUC6 level. The CR was especially strong with the estimation of the linear trend for the HUC2 basins.
This seems quite a feat if one considers that the model was not calibrated against water‐balance data as it is
calibration‐free (however, setting the PT α value is required; detailed in the Appendix) and employs only a
minimum number of input variables, such as net surface radiation, wind speed, and air‐ and dew‐point tem-
perature (or any other humidity measure) which also make it easily applicable on a global scale (with the PT
α possibly set by, e.g., continents). Future research may clarify if setting the PT αmay require further regio-
nalization techniques such as discussed by Samaniego et al. (2010). As of today it is not clear what surface
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and/or boundary layer flow parameters the value of the PT α depends on despite of several exploratory stu-
dies (de Bruin, 1983; de Bruin & Keijman, 1979; Heerwaarden et al., 2009; Lhomme, 1997; Szilagyi, 2015).

For these reasons, it is believed that the CR model here described could serve as a benchmark to other ET
estimation models requiring a significantly larger number of input variables often obtained by state‐of‐
the‐art data acquisition (often remotely sensed) and assimilation systems while running on strong computer
platforms. These authors believe that this CR could especially benefit the LSMs of current climate models
with their calibration (when water‐balance data or surface flux measurements of latent and sensible heat
are absent or of poor quality) and “back‐evaluation” to verify that the atmospheric measurements are indeed
in balance with the LSM‐predicted latent heat fluxes, especially in future climate scenarios when water bal-
ance data are nonexistent for verification. Note that the CR is only a diagnostic tool for the ET rates, as it
estimates the cause (ET) from the effect (moisture content and temperature of the air), and therefore, it can-
not be employed for predictions in the same sense as those models that predict the ET rate at a future time
(i.e., at t + dt) from, for example, the soil moisture and vegetation status obtained at time t.

The success of the present version of the CR lies in its tracking the state of an air parcel, in contact with the
surface, via adiabatic processes. It directly relates the surface latent heat flux averaged over a suitable spatial
and temporal scale (allowing for a full adjustment of the atmospheric boundary layer to surface properties
and fluxes) to the average state of the air overlying the land surface and not through a proxy, like soil moist-
ure. It also makes use of the possible limit values in regional evaporation rates under a given surface‐
available energy and wind conditions together with how fast evaporation rates may depart from their limit
values with changing atmospheric conditions of air humidity and temperature, that is, the very same atmo-
spheric response that changing ET rates triggered in the first place.

Appendix A

Under a constant Rn − G term at the drying surface the sum of the latent (LE; i.e., the evaporation rate
expressed in energy flux units) and sensible (H) heat fluxes is also constant, from which it follows that a
change in one will cause a similar but opposite change (δ) in the other, that is, δLE = −δH. The correspond-
ing response in terms of vapor pressure (e) and temperature (T) of the air in contact with the surface will
follow the adiabatic line of Figure A2 (Monteith, 1981). With H changing, the surface temperature (Ts) will
also change proportionally (proportionality denoted from here on by the ∝ symbol), which will affect the air
temperature, so that one can write –δLE = δH ∝ δTs ∝ δT = −δe/γ (the latter from the adiabat), thus obtain-
ing δLE ∝ δe/γ. By normalizing the changes with their maximum range, and taking advantage of the linear
nature of the adiabat, yields the following nondimensional form

E−Edry

Ew−Edry
¼ E

Ew
∝

e−edry
e Twð Þ−edry ¼

e
e Twð Þ (A1)

Under a constant Rn − G and fu terms Tw (similar to Twb) stays constant [and thus e (Tw) too, which then can
be replaced by any other constant in the proportionality, such as e*(Tw) or e*(Twb)] under adiabatic changes
of the surface air (Monteith, 1981; Szilagyi & Schepers, 2014). Therefore, the proportionality (equation (A1))
can be written as

E
Ew

∝
e* Tdð Þ
e* Twð Þ (A2)

Szilagyi et al. (2017) employed a polynomial approach, similar to Brutsaert (2015), for the proper functional
form of the proportionality in equation (A2) by considering expected boundary conditions for the function,
but could not improve upon some already existing versions of the CR.

In the classical versions of the CR (Brutsaert & Stricker, 1979; Morton, 1983), changes in the vapor pressure
are replaced by corresponding changes in the Ep term normalized also by Ew as E is in equation (A2) and are
inserted into a first order (i.e., linear) polynomial (as a first guess for the unknown functional relationship)
by considering that 1 ≤ Ep/Ew ≤ 2, while E/Ew takes up values of 1 and 0, respectively, at the limit/boundary
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values of 1 and 2. Note that the upper limit value of Ep/Ew assumes, in addition to linearity, a symmetrical
relationship between δ(E/Ew) and δ (Ep/Ew) around the shared value of unity (Figure A2). The solution for
the resulting set of linear equations thus becomes

E
Ew

¼ 2−
Ep

Ew
(A3)

The replacement of e(T) [=e*(Td)] by a linear function of Ep in equation (A2) works because the second term
of the Penman equation for Ep contains the vapor pressure deficit [VPD = e*(T) – e(T)] which changes in
accordance (Figure A1) with e(T) (but opposite in sign) along the adiabatic line [and slightly moderated
by the change in the γ/(Δ+ γ) term of equation (4) with temperature]. As seen from Figure A1, the VPD term
is much more sensitive to temperature changes than the vapor pressure term and may explain its better suc-
cess with predicting ET.

Equation (A3) yields two curves (one for E/Ew and another for Ep/Ew as functions of Ew/Ep, the latter a pos-
sible measure of water availability on the land surface) in Figure A2a, axisymmetric around the reference
level of unity, when E = Ew = Ep. As the land dries out of a completely wet stage (the [1, 1] coordinate point
in the graph), E is decreasing (therefore, T is increasing and with it e decreases along the adiabatic line of
Figure A1) with water availability, and therefore, Ep is increasing due to corresponding increases in VPD.

With a different grouping of the evaporation terms, equation (A3) can equally be brought into a form such as

E
Ep

¼ 2
Ew

Ep
−1 (A4)

displayed in Figure A2b. Note that the only way of ensuring that the theoretical lines overlap the measured
data is via the choice of the PT α value of equation (6). As a result, the same water‐balance derived Ewb/Ep
values may appear in different locations (are shifted horizontally) in the graphs, depending on the α value
that fits the given CR method.

As Kahler and Brutsaert (2006) and Szilagyi (2007) noted, there is no physical necessity for the CR to be sym-
metric since Ep can be interpreted in several ways, the Penman equation just one of them. Ep can equally be

Figure A1. Air temperature (T)–vapor pressure (e) relationships. See the text for the definitions of the different terms
displayed.
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represented by different evaporation‐pan data or by different wind
functions (Ma et al., 2015) in the Penman equation. Therefore, Kahler
and Brutsaert (2006) modified equation (A3) but still keeping its linear
nature between its terms. The unity and zero values of E/Ep will now take
place at the corresponding limit/boundary values of 1 ≤ Ep/Ew ≤ 1 + b,
where b > 0. The solution thus becomes

E
Ew

¼ 1þ b
b

−
1
b
Ep

Ew
(A5)

which translates into

E
Ep

¼ 1þ b
b

Ew

Ep
−
1
b
: (A6)

See Figure A2 for the corresponding curves with the b = 1.3 choice, as
illustration. The CR curves for E/Ew and Ep/Ew in Figure A2a are no
longer symmetric.

By allowing for a higher‐order (i.e., third‐order) polynomial between
y = E/Ep and x = Ew/Ep and taking into consideration the
following boundary conditions (BC): (i) y = 1 at x = 1, (ii) y = 0 at x = 0,
(iii) dy/dx= 1 at x= 1, and (iv) dy/dx= 0 at x= 0, Brutsaert (2015) obtained
the y = 2x2 – x3 nonlinear CR. When written out in the original variables
it yields

E
Ep

¼ Ew

Ep

� �2

2−
Ew

Ep

� �
(A7)

or equally

E
Ew

¼ Ew

Ep
2−

Ew

Ep

� �
: (A8)

To make it more flexible Brutsaert (2015) introduced an additional
parameter, c, which thus yields y = (2 − c)x2 + (2c − 1)x3 − cx4.
Szilagyi et al. (2016) warned that −1 ≤ c ≤ 2 must be met for (i) a

monotonic functional relationship between E/Ep and Ew/Ep as well as (ii) making sure that y ≤ x for
0 ≤ x ≤ 1, which means that E ≤ Ew must always be met. With the c = 2 choice, displayed in
Figure A2, one obtains

E
Ep

¼ Ew

Ep

� �3

3−2
Ew

Ep

� �
(A9)

and

E
Ew

¼ Ew

Ep

� �2

3−2
Ew

Ep

� �
; (A10)

respectively. Szilagyi et al. (2016) pointed out that unless Ew is zero, the Ew/Ep term will always be larger
than zero (thus, the lower BC is misconstrued in general) as the VPD term in the Penman equation is
bounded by e*(Tdry) (see Figure A1) and wind velocities at 2‐m height above the ground are also limited
in value. As a remedy, BC (ii) can be replaced by (ii)' y = 0 at x = d (0 ≤ d < 1) since y may vanish
already at x = d (Szilagyi et al., 2016). To make the model even more flexible, Szilagyi et al. (2016)
let the slope (s) of the nonlinear CR function be larger than zero at the origin, d, via the new BC (iv)'

Figure A2. Theoretical relationships between the nondimensional terms of
the different CR versions discussed in the Appendix, overlain a sample data
set of mean annual HUC6 values across CONUS (data source: Szilagyi et al.,
2017). No parameters (where appropriate) were calibrated for the data dis-
played which here serve only a demonstrational purpose between theoreti-
cal lines and data points. B2015 = Brutsaert (2015), S2016 = Szilagyi et al.
(2016), S2017 = Szilagyi et al. (2017).
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dy/dx = s at x = d, with s ≥ 0. Solution of the third‐order polynomial of y = a3x
3 + a2x

2 + a1x + a0
thus becomes

a3 ¼ d−sþ dsþ 1ð Þ d−1ð Þ−3; a2 ¼ 2s−d2s−2d2−2d−ds−2
� �

d−1ð Þ−3;
a1 ¼ d3 þ 2d2sþ d2 þ 4d−s−ds

� �
d−1ð Þ−3; a0 ¼ ds−2d2−d2s

� �
d−1ð Þ−3

(A11)

with the admissible range for the slope as 0 ≤ s ≤ (2d + 1)/(1 − d), resulting from the (monotony and PT
limit line) constraints above on the behavior of the expected CR function. Note that equation (A11) is
valid for x ≥ d; when x < d, y = 0 is expected (Szilagyi et al., 2016). For the E/Ew term the polynomial
becomes (with the same coefficients above)

E
Ew

¼ a3x
2 þ a2x þ a1 þ a0x

−1: (A12)

See Figure A2 for the two sample curves when d = 0.25 and s = 0.

The nonlinear CR solution of Szilagyi et al. (2016) improves upon the unrealistic boundary value choice
of Ew/Ep = 0 by Brutsaert (2015) by exploiting that Ep is bounded. The unrealistic zero value of x by
Brutsaert (2015) leads to similarly unrealistic low values of the PT α (=1.03 in Figure A2) in Brutsaert's
(2015) solution (see Brutsaert et al., 2017), and also to the present choice of the largest possible value
of c (=2), the latter making the CR curve as wide as possible in Figure A2, both necessary to bring obser-
vations match with theory in Figure A2. The problem though with the improved BC of Szilagyi et al.
(2016) becomes that it is just a constant, while the maximum value (Ep

max) of the Ep term may change
by the measurement period. These Ep

max values for each measurement period however can be estimated
by the Penman equation through the e*(Td) = 0 choice, and by the help of the adiabatic line of Figure A1
for the estimation of the corresponding dry‐environment air temperature, Tdry (equation (9)), reached
when the environment becomes completely dry, or is very close to it. A proper scaling of the x = Ew/
Ep values thus becomes as X = (Ep

max − Ep) (Ep
max − Ew)

−1x, which ensures that X indeed is zero when
Ep has reached its maximum value of Ep

max (Crago et al., 2016; Szilagyi et al., 2017) and allows X become
unity when the environment is wet, that is, E = Ew = Ep. The Ai = (Ep

max − Ep) (Ep
max − Ew)

−1 term
itself can be considered as an index of aridity (Ai), having a value of zero under total lack of moisture
conditions and a value of unity in a wet environment. See Szilagyi et al. (2017) for the mean annual value
of Ai over CONUS. By employing the same BC's Brutsaert (2015) prescribed but now for X, one obtains
(Szilagyi et al., 2017)

E
Ep

¼ X2 2−Xð Þ (A13)

or equally

E
Ew

¼ AiX 2−Xð Þ: (A14)

Note the slight fluctuations in the equation (A14) curve of Figure A2a and in the corresponding Ep/Ew curve
(=Ai/X) due to the emergence of Ai outside of X (but not in equation (A13)).

Let us finally discuss Brutsaert's (2015) BCs of (iii) dy/dX = 1 at X = 1 and (iv) dy/dX = 0 at X = 0, employed
now for X. Let us use finite differences for the derivatives and denote the new values the variables acquire
through the changes with an index of “2”. At X = 1 one can write

δy ¼ δ
E
Ep

� �
¼ E2

Ep2
−1 ¼ E2−Ep2

Ep2
¼ 1−o 0ð Þ½ �Ew−Ep2

Ep2
(A15)

where the symbol means a positive number very close to the one shown in its argumentum. The
corresponding change in X is
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δX ¼ Emax
p −Ep2

Emax
p −Ew

Ew

Ep2
−1 ¼ 1−o 0ð Þ½ �Ew−Ep2

Ep2
(A16)

Thus, dy/dX at X = 1 is unity. The same changes at X = 0 are

δy ¼ δ
E
Ep

� �
¼ E2

Ep2
−

0
Emax
p

¼ E2

Ep2
¼ o 0ð Þ (A17)

while

δX ¼ Emax
p −Ep2

Emax
p −Ew

Ew

Ep2
−0 ¼ Ew

Emax
p −Ew

Emax
p −Ep2

Ep2
(A18)

where the change, Ep
max − Ep2, in Ep is likely much larger than the corresponding change in E

(and thus in T, therefore in e along the adiabat), because of the steep slope of the e*(T) curve at
high temperatures causing a large change in VPD and thus in Ep due to a relatively small change in
T (see Figure A1). As a result, dy/dX = 0 at X = 0 can be expected as the Ew (Ep

max − Ew)
−1 term

can never be too small (will not vanish).

Finally, the nonlinear CR model (equations (A13) and (A14)) with BCs (i) y = 1 at X = 1, (ii) y = 0 at X = 0,
(iii) dy/dX = u (≥1) at X = 1, and (iv) dy/dX = v (>0) at X = 0 were derived and tested (the results not dis-
played) with calibrated values of u and v with the help of water‐balance data of the HUC6 watersheds of
CONUS to see if relaxing BCs (iii) and (iv) for X would result in better ET predictions. None of these
calibrated models performed significantly better than the calibration‐free CR version applied in this
study, which shows at the very least that the current formulation is indeed highly robust and the
assumptions/approximations as a whole, employed in its derivation, are not far‐fetched from reality.

Appendix B

Estimation of a spatially and temporally constant value of α can be obtained with the help of the
Priestley and Taylor (1972), equation (6), inserted into the Bowen ratio (Bowen, 1926) written for a wet
environment as

Rn−G−Ew

Ew
¼

1−α Δ Twð Þ
Δ Twð Þþγ

α Δ Twð Þ
Δ Twð Þþγ

¼ γ
Tws−Tw

e� Twsð Þ−ea (B1)

in which all variables are defined in section 2.1. After rearrangement of equation (B1) one obtains

α ¼ Δ Twð Þ þ γ½ � e� Twsð Þ−ea½ �
Δ Twð Þ γ Tws−Tw½ � þ e� Twsð Þ−ea½ �f g : (B2)

For large‐scale gridded data, it is possible to identify wet cells as they must satisfy certain predefined
requirements, thereby calculating their α values that must fall within the theoretical limits of {1,
[Δ (Tw) + γ]/Δ (Tw)} (Priestley & Taylor, 1972). Note that when a cell is wet then Tw in equations (B1)
and (B2) equals the measured T, therefore these equations must be supplied by T during the identification
process of the possible wet cells. For cells where the measured T is not equal to Tw (i.e., are not wet), the α
value of equation (B2) will likely be outside the specified interval. Following Szilagyi et al. (2017), a grid
cell is considered “wet” provided that (i) Tws > T + 2 °C (note that if a cell is not wet then Tws < T or
Tws ≈ T is likely), (ii) relative humidity (RH) is larger than 90%, and (iii) the equation (B2) calculated α
value falls into the above specified interval. RH [=100 e*(Td)/e*(T)] was derived using T and Td data from
PRISM. Tws comes from equation (7) and here should not be limited by T. The average value of α resulting
from such wet cells yielded a value of 1.15 for CONUS, which was retained for use in the current
CR model.
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Appendix C

Pseudocode of ET Rate (mm/day) Estimations

The calculationsmay be performed by temporally averaged input values over intervals of integer multiples of
a day. Temporal averaging of the input variables five days or longer are expected to yield the most accurate
ET estimates due to the assumptions inherent in the complementary relationship (CR) of evaporation. The
optimal spatial scale for the CR is 1 km2 and up.

Input variables:

Air temperature (°C) T

Dew‐point temperature (°C) Td

2‐m wind velocity (m/s) u2

Net surface radiation (MJ·m−2·d−1) Rn

Soil heat flux (MJ·m−2·d−1) G

Constants:

Specific heat of dry air cp = 1.005 × 10−3 MJ·kg−1·K−1

Specific gas constant of dry air Ra = 287 J·kg−1·K−1

Gravitational acceleration g = 9.81 m/s2

Standard temperature lapse rate lr = 0.0065 K/m

Latent heat of vaporization for water (at 10 °C) Lv = 2.48 MJ/kg

Density of water ρw ≈ 1,000 kg/m3

Formulas:

Tetens equation of the saturation vapor pressure (hPa) e* ¼ 6:108e
17:27T
237:3þT ; T in °C

Slope of the vapor‐pressure curve (hPa/K) Δ ¼ 4098e*

237:3þTð Þ2; T in °C

Barometric pressure (hPa) at elevation z (m) P ¼ 1; 013 Tþ273:16
Tþ273:16þlr z

� �g lr Ra=

Psychrometric constant (hPa/K) γ ¼ cpP
0:622Lv

From wind speed (uh) at h m above ground to 2‐m wind (u2) u2 ¼ uh 2
h

� �1=7

Energy flux to water‐depth equivalent Rn [mm/day] = 103Rn [MJ·m−2·d−1] ρw
−1Lv

−1; the same applies for G

Data input: T, Td, u2, G, Rn

Output: Estimated actual ET rate, E, in mm/day

Start

1. Convert Rn and G into water‐depth equivalent of mm/day
2. Calculate Ep by equations (4) and (5)
3. Calculate Tws by iteratively solving equation (7), cap the value of Tws by T, if Tws > T
4. Calculate Twb by iteratively solving equation (10)
5. Calculate Tdry by equation (9)
6. With gridded large‐scale data of the input variables follow Appendix B for obtaining α, otherwise choose

a trial value from [1.1–1.32]
7. Assign the value of Tws to Tw and calculate Ew by equation (6)
8. Calculate Ep

max by equation (8)
9. Calculate the actual ET rate (E) by equations (1)–(3)
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End

The value of α can be calibrated (provided that measured ET rates are available) by trial and error relatively
fast as it is typically satisfactory to specify it to two decimals, and as such, there are only 23 distinct values
within the [1.1–1.32] interval.
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