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Can a vegetation index derived from remote sensing be
indicative of areal transpiration?
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Abstract

Monthly, maximum-value-composited normalized difference vegetation indices (NDVI), calculated from NOAA-
AVHRR images, were correlated with annual transpiration (TR) estimates (i.e. annual precipitation minus runoff) for
seven watersheds in Pennsylvania. A moderate relationship between the standardized variables was detected. The
NDVI–TR relationship dramatically improved with improved watershed TR estimates. At the Little River watershed
in Georgia, where the water balances of two sub-catchments could be reliably estimated over water cycles of variable
length (about 2 months to 11

2 years), the correlation coefficient between NDVI and TR was found to be 0.94 (a sample
size of 13). The present approach avoids the common practice of applying arbitrary hydrological models to validate
the NDVI–TR relationship and attempts to minimize the effects of possible spurious correlations between the two
variables that may stem from well-defined annual cycles in both the TR process and the foliage development of
vegetation. It is concluded here that NDVI seems to reflect temporal changes in areal TR in a humid environment
under well-vegetated conditions. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Terrestrial vegetation plays a crucial role in the
energy, mass, and momentum exchange between
the Earth’s surface and the atmosphere (Chong et
al., 1993). More specifically, transpiration (TR) of
vegetated surfaces allows for the transfer of sig-
nificant amount of energy across the land–atmo-
sphere interface due to the large amount of latent

heat involved in the vaporization of water. As has
been recently re-emphasized, the Earth’s vegeta-
tion has a profound impact on the global circula-
tion of the atmosphere and oceans and,
consequently, on the Earth’s climate (e.g. Luthi et
al., 1997). A thorough understanding of this spa-
tially and temporally highly variable interaction
between the biosphere and the global atmosphere/
hydrosphere requires the quantitative description
of areal flux rates.

The applicability of local water vapor flux mea-
surements (Bowen ratio or eddy correlation tech-
niques) to obtain spatially representative values is
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restricted as the physical extent of the study area
increases due to a general increase in the level of
heterogeneity of the surface properties. As a con-
sequence, satellite-based remote sensing tech-
niques have recently proved to be instrumental in
overcoming these difficulties due to the large field
of view of their sensors. Concurrently, classical
theoretical approaches describing the physics of
land–atmosphere interactions have been reformu-
lated to specifically incorporate available remotely
sensed properties of the land–atmosphere inter-
face. A recent development is the vegetation in-
dex/temperature (VIT) approach of Moran et al.
(1994a) and more recently its modified version by
Yang et al. (1997) to estimate evapotranspiration
(ET) rates of both full-cover and partially vege-
tated surfaces.

In the VIT approach, once the potential ET
rates have been defined, actual ET rates are a
function of the fractional vegetation cover and the
temperature difference between the air and the
fully or partially vegetated land surface. While air
temperatures are obtained through the use of a
thermometer, both fractional vegetation cover
and composite surface temperatures are derived
from remote sensing measurements of the spectral
response of the land surface.

The application of the VIT approach becomes
problematic at the watershed scale due to
difficulties in: (a) defining catchment-representa-
tive potential ET rates; and (b) obtaining frac-
tional vegetation cover and surface temperature
measurements during cloudy conditions. In lieu of
detailed micrometeorological measurements,
catchment-representative potential ET rates can
only be estimated (e.g. Singh, 1989) using gener-
ally available measured (e.g. temperature, pan
evaporation) and/or frequently estimated (e.g. net
radiation) meteorological variables. The fractional
vegetation cover and surface temperature mea-
surements can, in principle, be obtained from
aircrafts (e.g. Moran et al., 1994b) during cloudy
days when satellite sensors are seriously affected
by the condensed water vapor in the air, but the
high cost and logistics involved in such an en-
deavor practically inhibit the routine application
of airborne spectral data collection. While it is
true that vegetation conditions can be assessed

based on images composited bi-weekly to maxi-
mum value (Holben, 1986), the same approach
cannot be used for obtaining useful surface tem-
perature measurements. Maximum value com-
posited images contain only the largest value of a
measured property during a given period, thus
minimizing the shielding effects of clouds. The
technique works well for surface properties that
change relatively little during the composite pe-
riod such as the fractional vegetation cover esti-
mated through the application of a vegetation
index (e.g. Huete and Jackson, 1988; Huete, 1988;
Moran et al., 1994a and Yang et al., 1998). Un-
fortunately, this cannot be said of the air-surface
temperature differences. Different techniques have
been proposed to incorporate atmospheric correc-
tions in the derivation of the surface temperature.
Kerr et al. (1992) give a short, critical review of
the existing techniques which either require addi-
tional radiosoundings synchronous and colocated
with the satellite measurements or employ time-
consuming and very complex inversion al-
gorithms. An alternative choice is the application
of relatively simple differential absorption meth-
ods with a trade off in accuracy (Kerr et al.,
1992). These techniques, although very encourag-
ing, are still experimental and need empirical co-
efficients that are available only at specific sites.
As an alternative, one may use only the satellite-
derived vegetation index to estimate areal TR or
ET.

A widely used vegetation index is the Normal-
ized Difference Vegetation Index (NDVI), which
is defined as the ratio between two terms (NIR-
Red) and (NIR+Red), where NIR and Red are
the spectral responses of the vegetated land sur-
face in the near infrared and red bands, respec-
tively (Tucker, 1979). In the past decade NDVI
has been related to ET by numerous authors
(Running and Nemani, 1988; Kerr et al. 1989;
Price, 1990; Wiegand and Richardson, 1990; Cih-
lar et al., 1991; Desjardins et al., 1992; Gao et al.,
1992; Hall et al., 1992; Sellers and Hall, 1992;
Chong et al., 1993; Kustas et al., 1994; Seevers
and Ottmann, 1994; Nicholson et al., 1996; Szi-
lagyi et al., 1998). The evaluation of the NDVI
versus ET relationship in the above studies (ex-
cept Desjardins et al., which was inconclusive)
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Table 1
Watershed drainage areas as well as the locations of the precipitation and gauging stations

Drainage area (km2) Gauging stationPrecipitation station

LoysvilleBloservilleBixler Run, PA 39
Williamsport English CenterBlockhouse Creek, PA 98
Covington MainesburgCorey Creek, PA 32

56 BloservilleLetort Spring Run, PA Carlisle
192 BloservilleQuittapahilla Creek, PA Bellegrove
396 Covington MansfieldTioga River, PA

MonroetonTowandaTowanda Creek, PA 557

relies on the application of hydrological/ecologi-
cal models and/or the comparison of NDVI and
ET data generally expressing very strong seasonal
behavior. Either of these circumstances may mask
the true nature of the NDVI-versus-ET relation-
ship. The former does so because model outputs
of any kind generally express decreased variability
when compared to the variability in the original
process modeled, and the latter because the green-
ing up of vegetation (measured by the vegetation
index) and the ET process (like almost all
geophysical processes) follow a well-defined an-
nual course. In such a case, a meaningful linkage
between the two processes may not follow from a
high value of the correlation coefficient due to
possible spurious correlations. Therefore, it is de-
sirable to construct an experiment that: (a) does

not involve hydrologic/ecological model results to
compare to the NDVI data, and; (b) avoids the
correlation of data with strong seasonal trends. In
this paper our main objective is such an approach.

2. Methodology and description of the study sites

The application of remotely sensed vegetation
indices, which measure absorption of the sun’s
radiation by the chlorophyll of the green leaf
tissue, started in the late 1970’s for crop yield
monitoring (Tucker et al., 1979). In the mid
1980’s NDVI was demonstrated to be more sensi-
tive to changes in vegetation conditions (Tucker et
al., 1985) than a simple vegetation index. As
Wiegand and Richardson (1990) argued, a strong

Fig. 1. (a) The seven watersheds in Pennsylvania; (b) watershed B of the Little River, GA. Gauging station F is at the outlet of
watershed F, a headwater sub-basin of watershed B.
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Fig. 1 (Continued).
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Table 2
Measured mean daily rates (mm) of precipitation (P), runoff (RO), and pan evaporation (PAN); estimated mean daily rates (mm)
of watershed transpiration (TR), as well as mean NDVI values for individual water cycles

end Length PStart RO TR PAN NDVI
(mm day−1)of the water cycle (mm day−1)(mm day−1) (−)(mm day−1)(days)

Watershed B (334 km2)
506 3.88 1.13 2.75 4.46 139.315-12-90 9-29-91
224 2.97 1.265-21-92 1.7110-10-91 2.81 128.9

6-7-935-21-92 382 3.56 1.23 2.33 3.43 134.31
58 3.79 0.036-7-93 3.768-4-93 5.44 146.31
54 3.69 0.367-9-95 3.335-16-95 5.19 143.73

6-25-967-9-95 352 2.75 0.56 2.19 – 138.06
Watershed F (114 km2)

501 3.99 1.169-15-91 2.835-3-90 4.49 139.79
5-14-929-15-91 242 2.95 1.29 1.66 2.91 129.81
6-29-925-14-92 46 3.09 0.03 3.06 4.39 138.71

72 4.13 0.39-19-92 3.837-9-92 4.33 145.68
250 3.82 2.04 1.78 2.669-19-92 129.735-27-93
68 3.28 0.337-6-95 2.954-29-95 5.10 142.31

8-15-95 3156-25-96 2.76 0.76 2.00 – 137.03

Fig. 2. Standardized warm-season (April–November) NDVI versus annual watershed transpiration for the seven Pennsylvania
watersheds. r, linear correlation coefficient; N, number of observations.

relationship between NDVI and TR should not be
surprising because the green plant tissue, of which
chlorophyll activity is measured by NDVI (Sell-
ers, 1985; Sellers et al., 1992), must be active both
photosynthetically and transpirationally. This lat-

ter is so, because as the stomata open to let in
CO2 for photosynthesis, they lose water to the
atmosphere (e.g. Kramer, 1983, p. 360).

Unfortunately, many factors other than vegeta-
tion properties may influence the measured value
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of NDVI. Although NDVI has been shown to
minimize view angle effects of the sensor (Huete
et al., 1992) and the maximum value compositing
drastically reduces cloud contamination (Cheh-
bouni et al., 1994), the value of NDVI may still be
influenced by solar zenith angle (e.g. Epiphanio
and Huete, 1995), background soil conditions
(e.g. Chehbouni et al., 1994; Cyr et al., 1995) and
subpixel canopy cover (Jasinski, 1990; Price, 1990;
Band et al., 1991). Numerous attempts have been
made to account for these error sources in the
NDVI values (e.g. Huete, 1988; Baret and Guyot,
1991; Huete et al., 1992; Qi et al., 1994; Cheh-
bouni et al., 1994). While in general the modified
vegetation indices may considerably reduce errors
associated with the above listed sources, these new
indices still need to be validated over a wide range
of canopy covers and types (Chehbouni et al.,
1994).

To check the NDVI–TR relationship on data
without a seasonal cycle in the two variables (thus

minimizing any possible spurious correlations),
first ten watersheds were randomly selected in the
Susquehanna River basin, Pennsylvania. The wa-
tershed is the natural spatial unit for our investi-
gation because an areal water balance can easily
be applied over them and so our transpiration
estimates can eventually be validated. The
Susquehanna River basin is located in the non-
glaciated part of the North Appalachian Ridge
and Valley Region, an area characterized by long
ridges of 300–400 m in elevation, alternating with
broad valleys. The geology of the basin can be
described as folded Pennsylvanian sandstone and
shale and Devonian sandstone, siltstone and shale
(NASA-EOS Progress Report, 1995). The moder-
ately weathered loam soils are generally thin (1–3
m) with poorly developed horizons (ARS-USDA,
1976). The basin experiences a humid climate with
an annual precipitation of about 1000–1100 mm.
The typical vegetation cover (with a fractional
vegetation cover larger than 0.9) is mixed forest

Fig. 3. Mean water cycle NDVI versus transpiration for watersheds B and F in Georgia. r, linear correlation coefficient; N, number
of observations; the equation shown is the best fit line.
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Fig. 4. Mean water cycle NDVI versus precipitation for watersheds B and F in Georgia. r, linear correlation coefficient; N, number
of observations.

dominated by deciduous trees intermingled with
fields of crop and pasture.

Annual watershed TR was estimated by the
difference between annual precipitation and
runoff. While this difference is generally used for
estimating annual ET, it can also be used to
estimate TR, since in general, at least 90–95% of
the total ET comes from transpiration alone (ex-
cluding interception) in well-vegetated catchments
(Maidment, 1993, p. 4.26). The above estimation
of annual TR further assumes: (a) negligible water
storage changes in the watershed between years;
(b) negligible irrigated water volumes; (c) negligi-
ble groundwater exchange between unconfined
and confined aquifers as well as across watershed
boundaries; and (d) negligible level of evaporation
during the winter (December–March). The TR
estimates for each catchment were plotted against
the monthly, maximum value composited NOAA
AVHRR-derived NDVI-pixel values summed
over the warm season (April through November)

and spatially averaged over each watershed for
the period between 1990 and 1996 when NDVI
data were available. This period, however, is dis-
continuous because in 1994 the AVHRR sensor
malfunctioned. Out of the 10 watersheds, seven
catchments with the least scatter in the NDVI
versus ET graphs were retained for further analy-
sis (Fig. 1a). In the discarded catchments one or
several of the prerequisites, needed for annual
watershed ET estimations, may have been seri-
ously violated. Table 1 lists the names and the
drainage areas of the selected watersheds with the
accompanying precipitation and gauging station
locations.

To reduce uncertainties in watershed TR esti-
mations, a second study area was further selected
in the Little River basin, Georgia. Catchments B
and F, near the town of Tifton, are experimental
watersheds operated by the US Department of
Agriculture. The watersheds are representative of
the Coastal Plain Province of the eastern Unites
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States, which extends from New England along
the Atlantic coast to Texas (Williams, 1985).
Catchments B and F have a drainage area of 334
and 114 km2, respectively, watershed F being the
headwater sub-basin of watershed B (see Fig. 1b).
Catchment F had 20 and catchment B an addi-
tional seven rain gauges evenly distributed over
the catchments for data collection (Sheridan et al.,
1995). Class A evaporation pan data were also
available at a location near the town of Tifton,
approx. 3 miles southeast of watershed B. About
half of the drainage area of each catchment is
covered with mixed forests, while the other half is
non-irrigated crops and pasture (Sheridan, 1997).
The watersheds are covered with Quaternary sedi-
ments, poorly-sorted sands interbedded with
partly-indurated sandy claystones and clays that
are underlain by limestones over the Hawthorn
Formation, an aquiclude at a depth of 1–3 m
(ARS-USDA, 1976). The soils are permeable and
the infiltration rates are high (Williams, 1985).

The surface topography is relatively flat (Shirmo-
hamaddi et al., 1986). Less than 2% of the annual
precipitation of 1200 mm is lost to deep percola-
tion (Williams, 1985; Shirmohamaddi et al.,
1986). Climate in the region is characterized as
humid subtropical with long, warm summers and
short, mild winters (Sheridan, 1997). Precipitation
occurs almost exclusively as rainfall throughout
the year (Sheridan, 1997).

A unique feature of the watersheds in Georgia
is that their streams periodically experience no-
flow conditions of variable length. Since low-flow
drainage in the watersheds comes from thin, high-
permeability aquifers, it can be assumed that the
stored water volumes per unit drainage area are
approximately equal as runoff approaches no-
flow conditions (Williams, 1985). Consequently, a
water cycle can be defined between the starting
points of each subsequent no-flow period with an
assumption of negligible change in the stored
water volumes in the catchments. For each water

Fig. 5. Mean water cycle NDVI versus runoff for watersheds B and F in Georgia. r, linear correlation coefficient, N, number of
observations.
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Fig. 6. Mean water cycle class A pan evaporation versus transpiration for watersheds B and F in Georgia. r, linear correlation
coefficient; N, number of observations; the equation shown is the best fit line.

cycle, watershed ET and, as a consequence, TR
can be estimated by the difference in precipitation
and runoff (Williams, 1985).

To further reduce possible errors in water-cycle
TR estimates (i.e. when the change in groundwa-
ter storage is not zero), only those periods were
considered which had a minimum length of 46
days. Naturally, the longer the water cycle, the
smaller is the relative error in the watershed TR
estimates, since a possible non-zero storage term
becomes ever smaller when compared to the esti-
mated TR value. On the other hand, longer water
cycles reduce the number of TR estimates avail-
able. A minimum length of 46 days for water
periods seemed to be optimal.

When adjacent water cycles are less than 46
days, it is possible to combine them into one,
larger period. At the same time, it is desirable to
have water cycles with similar history, meaning
the watersheds should generally become more or
less saturated during water periods to let the

aquifer become recharged and then have it
drained. During short water cycles the aquifers
often do not become or become only minimally
recharged, which violates our assumption that at
the start of the no-flow period, the catchments
should have the same stored water volumes. This
effect is of importance, considering that in
forested catchments with thin soils, trees with-
draw moisture for transpiration from the satu-
rated zone too (Federer, 1973). It likely is even
more pronounced during periods of water short-
age, which are typically characterized by short
water cycles. As a consequence, the merging of
short, adjacent water cycles were not attempted;
neither water cycles with runoff less than 10−2

mm day−1 were included in the analysis for the
same reason.

Watersheds B and F, through the introduction
of water cycles, are thought to fully comply with
the four prerequisites listed above in order to
successfully estimate catchment TR. Table 2 lists
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the water cycles defined, with the resulting daily
mean precipitation, runoff, and estimated TR
rates. The application of daily mean rates was
important in order to eliminate the length of the
water cycle as a corrupting variable. Table 2 also
displays the watershed-averaged NDVI values,
maximum value composited over a month and
temporally averaged over each water cycle. Note
that the original NDVI values were modified for
convenience such that NDVI= (NDVImeasured+
1)×100 (see Di et al., 1994). This notation is kept
throughout the text.

3. Results and discussion

Before plotting the annual watershed TR esti-
mates for the seven Pennsylvania catchments
against NDVI in one graph, the following consid-
erations had to be taken into account. NDVI
itself can only reflect relative changes in the pho-
tosynthetic activity and in the accompanying tran-

spiration process since the same NDVI value may
correspond to different rates of transpiration
among catchments. This is so because the photo-
synthetic activity versus tranpiration ratio (also
called the water-use efficiency) is a function of
vegetation and climate (Kramer, 1983, p. 405–
408). Even across the Susquehanna River basin,
both dominant vegetation type and climate can
change among the selected catchments; conse-
quently, the two variables, TR and NDVI, had to
be standardized the following way:

fn*=
fn−B fn\

sfn

where fn* is the standardized variable of the n th

catchment, B fn\ is the multi-year (i.e. 5-year)
average, sfn is the standard deviation of the origi-
nal variable of the n th catchment.

Through the standardization it is possible to
check if a higher/lower-than-average NDVI value
results in a higher/lower-than-average watershed
TR value on an annual basis. Fig. 2a displays the

Fig. 7. Mean water cycle NDVI versus class A pan evaporation for watersheds B and F in Georgia. r, linear correlation coefficient,
N, number of observations.
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Fig. 8. Monthly watershed transpiration estimates based on monthly NDVI and class A pan evaporation data. Solid line: best fit
equation of Fig. 3; intermittent line: best fit equation of Fig. 6. r is the linear correlation coefficient between the two types of
monthly transpiration estimates.

Fig. 9. Same as Fig. 8, except the transpiration rate in month i is estimated by the NDVI value of month i+1.

resulting graph containing data for the seven
Pennsylvania watersheds. While it can be gener-
ally stated that a higher/lower-than-average

NDVI value does indeed result in a higher/lower-
than-average TR value, the scatter in the data
points is striking, reflected by only a moderate



J. Szilagyi / Ecological Modelling 127 (2000) 65–7976

value, 0.62, of the correlation coefficient. The
sample size is 34 because one watershed had a
year with missing precipitation. However, the lin-
ear nature of the relationship is clear, as was first
predicted theoretically by Sellers (1985). The large
scatter in the graph may be the result of: (a) the
assumptions required to estimate annual TR not
being met completely; and/or (b) single point
measurements being used (often the same precipi-
tation station was the only one available) to esti-
mate watershed precipitation (see Table 1).

Data in the Little River, Georgia, basin make it
possible (for reasons detailed earlier) to estimate
areal TR with higher reliability. The unique loca-
tions of the watersheds (i.e. catchment F is a
sub-basin of catchment B) and their practically
identical vegetation/soil/aquifer characteristics
makes it possible to plot the NDVI-versus-TR
values in the same graph without the need of any
standardization, unlike the seven Pennsylvania
watersheds. Fig. 3 displays the daily mean NDVI
values plotted against the daily mean rates of
estimated watershed TR corresponding to the 13
water cycles found over the temporal coverage of
NDVI. The correlation coefficient (r) value is
0.94, which means that 12% (=100 [1−r2]) of
the variation in the TR values is not explained by
variations in the NDVI values. This, however,
should not be surprising because the precipitation
minus runoff (P-RO) term really estimates ET and
not TR. The reason that we can use the P-RO
term to estimate TR has been discussed in the
previous section (i.e. TR � 0.9–0.95 ET). Note,
the eight lowest ET values belong to multi-season
periods, while the rest of the values (the five
highest ET rates) belong to summer season mea-
surements only; therefore, possible seasonality ef-
fects, discussed earlier, are greatly reduced.

Because photosynthetic activity reflects the inte-
grated effects of numerous environmental factors,
NDVI has been related to soil moisture (Henrick-
sen and Durkin, 1986; Walsh, 1987; Choudhury
and Golus, 1988; Farrar et al., 1994; Nicholson et
al., 1996) and to precipitation (Tucker et al., 1985;
Choudhury and Tucker, 1987; Seguin et al., 1989;
Nicholson et al., 1990; Davenport and Nicholson,
1993; Schultz and Halpert, 1993; Di et al., 1994;
Nicholson and Farrar, 1994; Grist et al., 1997;

Yang et al., 1997). While there is a direct physical
link between photosynthetic activity, detected by
NDVI, and transpiration, the relationship be-
tween NDVI and soil moisture is indirect only,
with the link being transpiration, since, for tran-
spiration to occur, the plant must deplete soil
moisture. The same is true for precipitation.
While we cannot check the NDVI-versus-soil
moisture relationship with our data (because it is
assumed that during a year or a water cycle,
water-storage changes are negligible), the precipi-
tation-versus-NDVI relationship can easily be
checked, as demonstrated in Fig. 4. It can be seen
that precipitation itself cannot explain changes in
the photosynthetic activity of the watersheds and
vice versa. (A relationship between precipitation
and NDVI is expected, however, in watersheds
with a more arid climate). The situation improves
with observed runoff values (Fig. 5), resulting in a
negative correlation, as expected, since the more
intense the photosynthetic activity of the water-
shed, the more water will be transpired and less
can occur as runoff over the water cycle.

Another interesting feature of the present data
set is that it can be easily checked if pan evapora-
tion can substitute for the generally unknown
watershed ET through the application of a pan
coefficient. It has been long held among hydrolo-
gists that in a water-abundant environment tran-
spiration occurs at its potential level, which, in
turn is controlled largely by atmospheric condi-
tions; vegetation type and soil factors being only
secondary (e.g. Eagleson, 1970, p. 227; Wilson,
1974, p. 35–36; Dunne and Leopold, 1978, p. 127
and 150). As a consequence, in such an environ-
ment transpiration, or ET to be more general,
should be correlated to pan evaporation, since in
both cases the major influencing factor is meteo-
rologically related. Fig. 6 seems to corroborate
this assumption with a correlation coefficient of
0.88 between class A pan evaporation measure-
ments and watershed TR estimates. The best-fit-
equation parameters agree with a 0.7 value as the
most commonly chosen constant class A pan co-
efficient (Dunne and Leopold, 1978, p. 101).

Because pan evaporation correlates strongly
with watershed TR (Fig. 6), NDVI also correlates
strongly with pan evaporation (Fig. 7), since wa-
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tershed TR had a strong correlation with NDVI
(Fig. 3). An interesting finding, however, can be
seen in Figs. 8 and 9. In Fig. 8 monthly values of
the daily mean watershed TR estimates (in water-
shed B) are displayed based on monthly class A
pan evaporation and NDVI measurements using
the best fit equations of Figs. 6 and 3, respec-
tively. On a monthly basis the correlation coeffi-
cient between pan evaporation and NDVI-based
watershed TR estimates is only 0.69, while at the
same time the multi-year daily mean watershed
TR averages are virtually identical: 2.52 (pan-
based) and 2.54 mm/day (NDVI-based), respec-
tively. Note that the NDVI-derived monthly TR
values generally lag behind the pan-derived TR
estimates by one month. Shifting the NDVI
derived values to the left, the correlation coeffi-
cient value increases to 0.72 from 0.69, as seen in
Fig. 9, although this change in the correlation
coefficient values may not be statistically signifi-
cant. Kerr et al. (1989), Cihlar et al. (1991) and
more recently Szilagyi et al. (1998) found the same
type of lag (i.e. 20 days, 15 days, and 1 month,
respectively) between ET (TR) values estimated
by a hydrologic model and NDVI. None of the
above authors could explain the observed lag,
partly, because the authors could not decide
whether the lag was to be attributed to inadequate
hydrologic model performance or was real. An
explanation can be, however, that potential ET
(PET) calculations, upon which actual ET estima-
tions are based, are calibrated/validated with pan
evaporation data. A good example can be seen in
Dunne and Leopold (1978), p. 136). The fact,
however, still remains that areal TR lags in time
behind pan evaporation. An explanation for this
can be found in Singh (1995), p. 319) by Burnash.

The moderate value of the correlation coeffi-
cient between monthly pan evaporation and
monthly areal TR estimates, combined with a
one-month lag between the two variables, how-
ever, raises the question: can pan evaporation,
and consequently hydrologic/water-balance mod-
els accurately predict areal ET on a monthly or
finer temporal resolution?

In summary, the present paper explored
whether NDVI can reflect changes in areal tran-
spiration rates of the vegetation. The method

described avoids the use of: (a) common simula-
tion results of arbitrarily chosen hydrologic mod-
els; and (b) the application of monthly data,
which intrinsically contain seasonal trends in the
variables, leaving room for spurious correlations.
Via the application of reliable precipitation and
runoff data, a preliminary moderate relationship
(r=0.62) found over seven watersheds in Pennsyl-
vania has been improved to become a strong
relationship (r=0.94) between NDVI and areal
transpiration rates over two, well vegetated, hu-
mid catchments in Georgia. This result suggests
that temporal changes in areal transpiration rates
of vegetated surfaces may be tracked through the
application of widely available and inexpensive
satellite remote sensing images.
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