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s u m m a r y

The existence of a symmetrical complementary relationship (CR) in evaporation has been hypothesized in
the hydrologic literature but the conditions required have not been investigated in much detail. In this
study it is shown that under near-neutral atmospheric conditions and a constant energy term at the evap-
orating surface, the analytical solution of the coupled turbulent diffusion equations of heat and vapor
transport across a moisture discontinuity of the surface yields a symmetrical CR between the evaporation
rate of the uniform drying land upwind of the discontinuity and the mean evaporation rate of the wet
area provided, the latter has a proper fetch (i.e., along-the-wind extent). This fetch is a function of the
air stability parameter and the assumed uniform surface roughness value, and it is in the order of a
100 m for a smooth surface under near-neutral atmospheric conditions. The analytically derived mean
evaporation rates of such a smooth wet surface compare well, i.e., within 10%, to the Penman equation
estimates, most frequently employed within the CR framework.

� 2009 Elsevier B.V. All rights reserved.

Introduction

The complementary relationship (CR) of evaporation, first intro-
duced by Bouchet (1963), is an important tool for the practicing
hydrologist because it can estimate actual evaporation (E) from cli-
matic variables that are regularly observed at standard meteoro-
logical stations. This is unique because other existing evaporation
estimation methods require measurements (a) obtained at two dif-
ferent heights above the ground (Bowen-ratio instruments); (b) ta-
ken by fast response sensors (eddy-covariance stations), or (c) by
remote sensing platforms. Still others need information of the veg-
etation status of the land (Penman–Monteith equation (Monteith,
1973)) or depend on the choice of the soil-moisture tracking algo-
rithm to maintain a book keeping of the incoming and outgoing
water fluxes of the area in question within the confines of a
lumped or distributed hydrologic model.

A recent upsurge in CR-based evaporation studies (Hobbins
et al., 2001a,b; Szilagyi, 2001a, 2007; Szilagyi et al., 2001; Crago

and Crowley, 2005; Ramirez et al., 2005; Kahler and Brutsaert,
2006; Pettijohn and Salvucci, 2006; Szilagyi and Jozsa, 2008,
2009) combined with a controversy about the existence of a true
complementary relationship between potential (Ep) and actual
evaporation rates (LeDrew, 1979; McNaughton and Spriggs,
1989; Kim and Entekhabi, 1997; Lhomme, 1997a,b; Sugita et al.,
2001; Szilagyi, 2001b; Lhomme and Guilioni, 2006) motivated this
study. It is aimed to look at how the increase in sensible heat flux
over a drying land surface actually becomes transformed into a
corresponding increase in potential evaporation rates, especially
when this transformation is not uniform in space.

It is important to mention that any theory requires certain pre-
defined conditions to exist under which it is supposed to be valid.
In reality, such exact conditions may not always be found or just
rarely. Here an attempt is made to show that a true complementar-
ity indeed exists between actual (E) and potential evaporation (Ep)
rates provided certain conditions, discussed in detail below, are
maintained. This work however does not try to investigate how
the symmetry breaks down and the CR becomes modified when
the required conditions are not met in reality. These issues are
dealt with in, e.g., Brutsaert and Parlange (1998), Kahler and
Brutsaert (2006), Szilagyi (2007), and Szilagyi and Jozsa (2008).

The CR (Bouchet, 1963) can be expressed by the simple
equation
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Eþ Ep ¼ gEw ð1Þ

where Ew is the so-called wet environment evaporation rate which
would result from a uniform wet surface of regional extent. The
proportionality coefficient, g, can be a constant (Brutsaert and
Stricker, 1979; Kahler and Brutsaert, 2006) or a temperature-depen-
dent variable (Szilagyi, 2007). When g = 2, the relationship is sym-
metric around an assumed constant Ew value resulting from a
similarly constant energy rate (Qn) at the surface (fully consumed
by sensible [H] and latent heat [LE] fluxes between the land and
the air), meaning that E increases/decreases by the same amount
as Ep decreases/increases. Note that the term, potential evaporation,
Ep, in essence is designed to specify the evaporation rate that would
take place from a large area under the same atmospheric conditions
E is observed, were moisture not a limiting factor. Following Brutsa-
ert and Parlange (1998), Szilagyi (2007) and Szilagyi and Jozsa
(2008) concluded that as long as there is no heat transfer from a
warmer drying land to a cooler wet surface (or when this heat
transfer is negligible due to the size of the areas involved) across
the solid boundary of the freely evaporating surface, (1) can become
symmetric under time-invariant Qn, wind and turbulent diffusion
coefficient conditions. To further check this largely speculative
claim, the coupled 2-D turbulent heat and vapor transport equa-
tions will be utilized after Yeh and Brutsaert (1971) and Brutsaert
(1982) in this study.

Analytical solution of the coupled turbulent heat and vapor
transport equations

Let’s consider a sudden moisture and temperature discontinuity
at the land surface spreading to infinity perpendicular to the pre-
vailing mean wind, �u, blowing along the x-axis of a Cartesian coor-
dinate system. Since everything is assumed to be homogeneous
along the y-axis, the other two components of the mean wind vec-
tor can be considered zero without loss of generality. Let’s denote
by Kv and Kh the vertical tensor components of the turbulent diffu-
sivity for vapor and heat, and assume that they are comparable, i.e.,
Kv � Kh = K. By applying a first-order closure approach (i.e., the K-
theory) for the turbulent fluxes the steady vapor and heat trans-
port equations become

�u
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where �q is the mean specific humidity, T is the mean air tempera-
ture, a good substitute for the required mean potential temperature
due to the close proximity to the land surface. The surface rough-
ness is assumed to be uniform, while the prescribed equilibrium
�uðzÞ ¼ azm and K(z) = bzn profiles are further assumed to remain un-
changed across the discontinuity. From experimental data a = (5.5/
7m) u� (z0)�m, b ¼ u�zm

0 =ð5:5mÞ and n = 1 �m can be written, where
u� is the friction velocity and z0 the roughness height of the surface,
but they are not needed to be specified this way for the solution of
(2).

Upwind of the discontinuity (from here on the subscript ‘a’ will
refer to the non-wet ‘arid’ conditions) let the specific humidity,
�qaðzÞ, and temperature, TaðzÞ, profiles be in an equilibrium,
meaning
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At the wet surface, i.e., 0 < x < xf, the specific humidity is a function
of its temperature, although this is not a necessary assumption for

the solution. Here xf is the extent (or fetch) of the wet surface along
the x-axis. Let also the net energy flux be zero at the surface, up-
and downwind of the discontinuity, while let the incoming radia-
tion, Rda and Rd, be constant, however not necessarily the same
due to possible differences in the albedo as a result of the moisture
contrast. Note, the thermal radiation of the surface, treated as a grey
body with emissivity, e, will not be constant in general as it maybe a
function of the surface temperature due to changes in the moisture
content of the land surface. Let’s assume here that heat conduction
at the surface, Ga and G into the soil is constant, although they may
depend on the surface temperature, as discussed by Yeh and Brutsa-
ert (1971) who also formulated a solution of (2) for this latter, more
general case.

Let the boundary conditions (BC) be formulated first for the
‘arid’ surface

�qa ¼ qas; Ta ¼ Tas at z ¼ 0

� cpqK
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@z
� LeqK

@�qa

@z
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as þ Ga ¼ Rda at z ¼ 0

� cpqK
@Ta
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¼ Ha; �qK

@�qa
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¼ Ea; at z ¼ 0

and now for the wet surface

�q ¼ �qaðzÞ; T ¼ TaðzÞ at x ¼ 0; z > 0
�q ¼ qsðTsÞ at 0 < x < xf ; z ¼ 0

� cpqK
@T
@z
� LeqK

@�q
@z
þ erT4

s þ G ¼ Rd at 0 < x < xf ; z ¼ 0

� cpqK
@T
@z
¼ Ha; �qK

@�q
@z
¼ Ea at x > xf ; z ¼ 0

where cp is the specific heat of air at constant pressure, Le the latent
heat of vaporization of water, r the Stefan–Boltzmann constant, q
the air density, Ha and Ea the heat and water vapor fluxes from
the land surface up- and downwind of the wet surface. Note that
only either Tas or qas can be arbitrary, since for a given Rda and Ga

they together must satisfy the second BC of the arid surface above.
Eq. (2) with the specified equilibrium profiles and BCs was first

solved analytically by Laikhtman (1964) and later for the more
general soil heat conduction case by Yeh and Brutsaert (1971).
Let the following terms be defined as

c1 ¼ cpqbðTm � TasÞ
a

bxf

� �m

ð1� nÞ1�2m

c2 ¼ 4erT3
asðTm � TasÞ

c3 ¼ Leqbðqm � qasÞ
a

bxf

� �m

ð1� nÞ1�2m

c4 ¼ ðRd � GÞ � ðRda � GaÞ

c5 ¼
Tm � Tas

qm � qas

dq�

dT

����
T¼hTi

¼ Tm � Tas

qm � qas
aq

c6 ¼
q�as � qas

qm � qas

x ¼ c2m1�2mCðmÞ
ðc1 þ c3c5ÞCð1� mÞ

where Tm and qm are some representative temperature and specific
humidity of the wet surface, m = (1 � n)/(2 + m � n), U is the com-
plete gamma function, and q* is a value at the saturated specific
humidity curve, the slope of which, aq, is to be taken at tempera-
ture, hTi. Yeh and Brutsaert (1971) specified hTi as Tas, but applying
a temperature hTi = (Tas + Tm)/2 in the numerical evaluation of the
analytical solution yields significantly improved accuracy as dis-
cussed later. With the above terms the water vapor and heat flux
from the wet surface can be obtained as
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E ¼ �qK
@�q
@z

����
z¼0
¼ Ea þ cpqb

a
bxf

� �m

ð1� nÞ1�2m

� q�as � qas

CðmÞm1�2mðcp þ aqLeÞ
n�m

þ aq½c4 þ c2c3c6=ðc1 þ c3c5Þ�
cp þ aqLe

X1
i¼0

ð�xÞinim

Cð1þ imÞ ð4Þ

H ¼ �cpqK
@T
@z

�����
z¼0

¼ Ha � cpqb
a

bxf

� �m

ð1� nÞ1�2m

� Leðq�as � qasÞ
CðmÞm1�2mðcp þ aqLeÞ

n�m þ cp½c4 þ c2c3c6=ðc1 þ c3c5Þ�
cp þ aqLe

�
X1
i¼0

ð�xÞinim

Cð1þ imÞ ð5Þ

where n = x/xf. The temperature and specific humidity of the wet
surface results as

Ts ¼ Tas �
Leðq�as � qasÞ
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For the full solution describing T(x, z) and �q(x, z) over the wet
surface, see Laikhtman (1964) or Yeh and Brutsaert (1971).

By assuming that at the surface the available energy, Qn, rather
than Rd or Rda, remains constant in time as the originally uniformly
wet area dries out for x 6 0 (and also for x > xf), i.e.,
Q n ¼ Rda � Ga � erT4

as ¼ Rd � G� erT4
s ¼ const:, then the thermal

radiation and soil heat conduction terms drop out from the BCs
(since this way they never get defined), and so do the c2 and c4

terms as well above, the latter because both Rda and Rd become
replaced by the same constant Qn. As a consequence, the
third terms of the right-hand-side (r.h.s.) of (4)–(7) vanish too,
yielding
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Ts ¼ Tas �
Leðq�as � qasÞ

cp þ aqLe
ð10Þ

qs ¼ qas þ
cpðq�as � qasÞ

cp þ aqLe
ð11Þ

From (8) and (9) now it becomes clear that the sensible, H, and la-
tent heat fluxes, LE, change at the same rate along the wet surface,
but opposite in sign, since (8) multiplied by Le yields the same sec-
ond term on the r.h.s. as (9). From (10) it furthermore follows that
the temperature of the wet surface is constant along the fetch. A
constant wet surface temperature along the wet patch means that
any point of the wet surface, even if it is located infinitely far along
the patch, should have the same temperature response to an up-
wind aridity change of the environment. However, along the wet
fetch the advected drier and warmer air blends more and more into
the wet environment by becoming increasingly more humid and

cooler, which means that after a certain distance it will have no ef-
fect on the temperature of the wet surface, therefore a spatially con-
stant temperature of the wet patch can only be maintained if the
wet surface temperature remains constant in time as well. This con-
clusion of the wet surface temperature invariance to aridity changes
under a constant Qn (and unchanged �uðzÞ and K(z) profiles) has al-
ready been drawn speculatively by Morton (1983) and more re-
cently by Szilagyi (2001b) and Szilagyi and Jozsa (2008). While
Yeh and Brutsaert (1971) also discussed this possibility of a balance
in the sensible and latent heat fluxes along the wet surface they did
not explicitly specify when could this be expected, i.e., when Qn is
constant.

Dividing (10) by (11), the following equation results

Ts � Tas

qs � qas
¼ � Le

cp
¼ DTas

Dqas
ð12Þ

which is similar to the wet-bulb temperature equation written now
for the drying land surface. Here, D designates a temporal change.
The equation at the l.h.s. of (12) has been published by Yeh and
Brutsaert (1971), but not the r.h.s. which follows from a constant
wet surface temperature realization under a constant Qn, provided
the area was uniformly wet initially. Eq. (12) can help with actual
evaporation estimation when the land surface temperature is mon-
itored by satellite-mounted remote sensing instruments (Szilagyi
and Jozsa, 2009), since it relates the surface temperature increase
of the land to a change in its moisture status under a constant Qn.
With additional air temperature and humidity measurements sensi-
ble and latent heat fluxes can thus be derived (Szilagyi and Jozsa,
2009).

In (12) for any constant Ts either Tas or qas can be specified and
the other calculated. However, when the so-derived pair of Tas and
qas values is substituted back into (10) and (11) with aq evaluated
at Tas as defined by Yeh and Brutsaert (1971), a large difference in
the Ts values between (10) and (12) can be observed (Table 1)
whenever the Tas � Ts or qas � qs difference itself is large. This is
so because the derivation of the analytical solution of (2) is based
on a linearization that requires the temperature (and humidity)
change at the drying surface to be small. The discrepancy can how-
ever be significantly improved if aq is evaluated at hTi = (Tas + Tm)/2
rather, as has been mentioned before (Table 1). This temperature
replacement however is expected to only slightly affect the numer-
ical values of the analytical solution for H and E.

Fig. 1 displays the specific humidity and air temperature distri-
butions around a wet surface having a fetch of 50 m in the sur-
rounding drying land derived by numerical integration of (2) in
the finite-element model, FLEXPDE (http://www.pdesolu-
tions.com). Naturally the same could have been achieved by the
analytical solution from Laikhtman (1964) or Yeh and Brutsaert
(1971) for the �q and T profiles over the wet surface and the below
derived equilibrium profiles for the drying land. With the pre-
scribed qas value, Tas was obtained from (12). Initially the uniformly
wet surface was assumed to have a surface temperature of 20 �C
which was to be conserved over the wet surface due to the appli-
cation of (12). Note the reversal of the temperature profile around
the leading edge of the wet area as the hotter air runs over the
cooler surface, supplying heat toward the wet surface to be fully
consumed by the corresponding increase in evaporation.

From the second terms of the r.h.s. of (8) and (9) it is obvious
that neither the evaporation nor the sensible heat flux is constant
along the wet surface (Fig. 2), even when the wet surface temper-
ature is constant in time and space under a constant Qn. Does it
make any sense then to talk about a complementary relationship
between water-limited (Ea), and non-limited evaporation rates if
the latter is a function of the distance along the wet surface? The
answer is yes, provided the extent, xf, of the wet surface is defined
and a mean flux rate over that extent is obtained.

J. Szilagyi, J. Jozsa / Journal of Hydrology 372 (2009) 61–67 63
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The complementary relationship

Integrating (8) and (9) along x between zero and xf, and dividing
by xf yields the mean fluxes as

E ¼ Ea þ cpqb
a

bxf

� �m ð1� mÞ2m�2ðmþ 1Þ1�2mðq�as � qasÞ
CðmÞðcp þ aqLeÞ

ð13Þ

H ¼ Ha � cpqb
a

bxf

� �m ð1� mÞ2m�2ðmþ 1Þ1�2mðq�as � qasÞLe

CðmÞðcp þ aqLeÞ
ð14Þ

where (13) is the so-called Sutton solution (1934), and E defines the
potential evaporation rate, Ep, in (1). Before the CR can be investi-
gated the fluxes over the originally uniformly wet and the ensuing
drying surface are needed too. For the fully saturated initial condi-
tions the Bowen ratio becomes H/LE = c/d(Tz=0) where c is the psy-
chrometric constant (=cpp/0.622Le � 0.67 hPa K�1at 20 �C) and d is
the slope of the saturation vapor pressure curve at the surface tem-
perature. Coupled with the constraint LE + H = Qn, the initial fluxes
can be obtained. This initial latent heat flux, LE, divided by the latent
heat of vaporization, corresponds to Ew in (1). In practice Ew is most
often defined by the Priestley–Taylor (1972) equation Ew =
ad(d + c)�1Qn, where a is the Priestly–Taylor parameter, meant to
account for regional-scale advection of energy, and d now is evalu-
ated at the air temperature at 2 m. Since such advection now is ab-
sent in the present model setup, this parameter has a value of unity.
This way the difference in the wet environment evaporation rates,
whether the latter are derived by the Bowen ratio or the Priest-
ley–Taylor equation, is less than 1% (wet surface temperature of
20 �C, Qn = 100 W m�2).

The drying surface equilibrium fluxes subsequently are derived
first by prescribing either qas or Tas in (12) to calculate the other,
and then by integrating (3) for the equilibrium profiles of �q and T

Fig. 1. Specific humidity (q) and air temperature (Ta) distributions around a wet surface (�25 m < x < 25 m) in a drying land. Qn = 600 W m�2, Ts = 20 �C, m = 1/7, qas = 0.9q*(Ts),
z0 = 0.01 m, and u� = 0.5 ms�1.
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H

Fig. 2. Sensible (H) and latent heat (LE) fluxes along the wet surface under a
constant Qn (and surface temperature). Qn = 100 W m�2, Ts = 20 �C, m = 1/7,
qas = 0.8q*(Ts), z0 = 0.0002 m, and u� = 0.24 ms�1.

Table 1
Surface temperature, Tas, values to prescribed values of qas in (12) as well as the back-calculated values by (10) with aq evaluated at Tas and also at (Tas + Tm)/2. Tm = 20 �C, the star
denotes the saturation level of q.

qas = cq*(Tm), Tm = 20 �C, c Tas [�C] from (12) Ts [�C] from (10) with aq(Tas) Ts [�C] from (10) with aq[(Tas + Tm)/2]

0.95 21.75 20.06 20
0.9 23.5 20.22 19.99
0.85 25.26 20.5 19.99
0.8 27 20.86 19.98
0.7 30.51 21.88 19.93
0.5 37.52 24.85 19.64
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TðzÞ ¼ Tas �
H

cpbqð1� nÞ z
1�n

�qðzÞ ¼ qas �
E

bqð1� nÞ z
1�n

ð15Þ

with the assumption that above a certain elevation from the ground
the profiles are only negligibly affected by the surface drying and
the air remains close to saturation.

Table 2 lists the wet surface extent, xf, required for a symmetric
CR for different values of the air stability parameter, m, with sur-
face (z0) and turbulence (u�) parameters representing a large open
water body of the Finger Lakes region in upstate New York in the
summer (Yeh and Brutsaert, 1971), as well as with a z0 value char-
acteristic of mixed vegetation of trees, bushes and grass (Brutsaert,
1982, p. 114). As expected, the wet surface extent increases with a
weakening of the atmospheric stability, as the moisture is being
transferred more effectively from the land into the upper regions
of the air column, thus needing a longer fetch for the air to become
close to saturation over the wet surface. Note that the extent of the
wet surface needed for a symmetric CR is typically in the order of a
100 m under near-neutral atmospheric stability conditions for a
smooth surface.

Eqs. (8), (9) and Fig. 2 demonstrate that both, the evaporation
and the sensible heat flux, vary along the wet surface, while Table
2 also displays the required, certainly not negligible, extent of the
wet surface for a symmetric CR between drying land evaporation
and the mean evaporation rate of the wet surface. This contradicts
the conclusion of Morton (1983) and Szilagyi (2001b) that the
evaporation rate of a hypothetical evaporimeter (i.e., an almost
zero-extent wet surface having insulated sides and bottom to pre-
vent heat conduction across them) should yield a symmetric CR. In
Morton’s (1983) derivation a symmetric CR results only if one as-
sumes that the temporal change in the drying land’s sensible heat

flux, DH, equals the same change in the latent heat flux, DLE, of the
vanishing-size wet surface. As (8) and Fig. 2 indicate this is true in
one point (somewhere in the middle) of the wet surface only, while
it is also true for the mean LE value (since xf was deliberately cho-
sen so), neither representing a vanishing-size wet area. Szilagyi
(2001b) attempted to demonstrate that the prescribed equality of
the flux changes (i.e., DH = DLE) in Morton’s derivation of a sym-
metric CR is not necessary over a homogeneous land area. The
problem with the result of Szilagyi (2001b) is that it yields a sym-
metric CR the same as it does an asymmetric one by simply chang-
ing the lower reference level, required in his derivation,
accordingly.

In practice the wet-surface or open-water evaporation rate is
estimated by the Penman (1948) equation

EPM ¼
d

dþ c
Q n þ

c
dþ c

f ðuÞðe�a � eaÞ ð16Þ

where the wind function, f(u), is traditionally written as
f(u) = 0.26(1 + 0.54 u2) with u2 [ms�1] being the mean wind at
2 m above the ground. ea [hPa] is the vapor pressure at the air tem-
perature from the same elevation (both, u and ea, obtained upwind
of the wet surface), the starred value denotes the saturation level,
and the slope of the saturation vapor pressure curve, d, is also taken
at the same air temperature. Qn must be in water depth equivalent
of mm d�1 for obtaining the evaporation rate in the same dimen-
sion. Obviously, (16) does not include the extent of the wet surface.
However, it has been known that a symmetric CR employing (16)
for Ep in (1) yields realistic estimates of the actual evaporation rates
(Brutsaert and Stricker, 1979; Hobbins et al., 2001a; Szilagyi and
Jozsa, 2008). If so, then (16) can be expected to approximate the
wet-surface/open-water evaporation rate of an area that has the
proper extent to ensure a symmetric CR. Indeed, as Table 3 demon-
strates, the EPM estimates are very close (i.e., within 10%) to the ana-
lytical solution values of (13) for a smooth land surface (the small
roughness value is representative of an open water body) under
near-neutral atmospheric stability conditions. Interestingly, the
Penman equation yields fairly good estimates (with a mean accu-
racy of about 15%) of the mean evaporation rate of the smooth
wet area with the above specified fetch values not just for a simi-
larly smooth land surface but also for a much rougher one with a
z0 value two orders of magnitude larger, representing a realistic
land surface upwind of a smooth open water area. Note that by
changing the z0 value, the Penman equation estimates are also af-

Table 2
The xf values [m] as a function of m, required for a symmetric complementary
relationship. (a) z0 = 0.0002 m, u� = 0.24 ms�1 (from Yeh and Brutsaert, 1971) and (b)
z0 = 0.2 m, and u� = 0.24 ms�1.

m [–] (a) (b)

1/8 40 7
1/7 105 15
1/6 312 31
1/5 1150 72

Table 3
Wet surface evaporation from (13) and the Penman equation for different values of the air stability parameter, m. Qn = 100 W m�2, z0 = 0.0002 m, and u� = 0.24 ms�1. The values in
parentheses for the Penman equation estimates result from z0 = 0.2 m, representing a more realistic rough land surface upwind to a smooth open water surface.

qas = cq*(Tm), Tm = 20 �C, c Tas [�C] from (12) LE from (13) [W m�2], m LE from Penman [W m�2], m

1/6 1/7 1/8 1/6 1/7 1/8

1 20 68 68 68 68 (68) 67 (68) 67 (68)
0.95 21.75 80 82 84 84 (76) 82 (76) 80 (75)
0.9 23.5 92 96 99 100 (85) 96 (84) 92 (83)
0.85 25.26 104 111 115 116 (93) 109 (91) 104 (90)
0.8 27 117 125 131 131 (101) 122 (99) 116 (97)

Table 4
Sensitivity of the mean evaporation rate to changes in xf required for a symmetric complementary relationship for m = 1/7.

qas = cq*(Tm), Tm = 20 �C, c Tas [�C] from (12) LE from (13) [W m�2], xf = 105 m

xf/2 xf 2xf

0.95 21.75 85 82 80
0.9 23.5 101 96 92
0.85 25.26 117 111 104
0.8 27 134 125 116
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fected through a corresponding change in the wind velocity and dif-
fusivity (see their definitions), as well as the temperature and mois-
ture profiles [see (15)], even though the same wind function,
specified by Penman, was employed throughout. In such a more
realistic situation (under the same stability conditions) the mean
evaporation rate as well as the fetch required for a symmetric CR
can, however, be expected to differ somewhat from a uniformly
smooth surface case due to the ensuing changes in the wind and
K profiles over the land and the simultaneous profile changes across
the moisture discontinuity caused by a sudden drop in the z0 value.
The current theory, requiring a uniform roughness height, cannot
explain the consequences of such a change in surface roughness.
Note that on a daily basis, working with daily mean values, the
assumption of near-neutral stability conditions is well justified.

In Table 3 the fetch has systematically been chosen to result in
a symmetric CR. Since the EPM values are typically close to the
ensuing mean evaporation rates, not only can it be concluded
based on the analytical solution of the coupled 2-D steady turbu-
lent heat and vapor transport equations that a symmetric CR in-
deed exists under a constant Qn, provided the fetch or extent of
the wet surface is chosen as a function of the air stability param-
eter, but it can also be stated that there already exists a fairly ro-
bust estimating technique, the Penman equation, that yields
estimates of the mean evaporation rate of such an open water
or wet surface. This of course is not by chance since: (a) for the
calibration of the wind function small reservoir and lake evapora-
tion measurements have also been used by Penman beside the
application of sunken evaporation pans and (b) under (at least)
near-neutral conditions even a relatively large deviation from
the required fetch (Table 4) results in only slightly changed mean
evaporation rates due to the near flat section of the LE curve in
Fig. 2 after its initial sharp decline with distance from the mois-
ture discontinuity. It is for the same reason that the value of g
in (1), required for a symmetric CR, changes sluggishly with the
extent of the wet surface (Table 5).

Summary and conclusions

The existence of a symmetric complementary relationship (CR)
between actual (from a uniform drying land) and potential (the
mean evaporation rate of a wet area having an along-the-wind ex-
tent in the order of a 100 m for a smooth surface) evaporation rates
under near-neutral atmospheric stability conditions has been dem-
onstrated with the help of a well-known analytical solution (Lai-
khtman, 1964; Yeh and Brutsaert, 1971) of the coupled 2-D
turbulent heat and vapor transport equations. The assumptions
necessary for a symmetric CR are: (a) the energy available for la-
tent and sensible heat fluxes at the surface is constant; (b) the sur-
face roughness is uniform; (c) the equilibrium profiles of the mean
horizontal wind and turbulent diffusion coefficients remain con-
stant in time; and (d) the turbulent diffusion coefficient is the same
for heat and water vapor.

Under near-neutral atmospheric and uniformly smooth surface
conditions the Penman equation estimates the mean evaporation
rate of a wet surface remarkably well, i.e., within 10% of the analyt-
ical values. When the Penman equation is applied with a wind pro-
file representative over a rough surface, its accuracy (assuming the
mean wet surface evaporation and the required fetch would not

change significantly) drops only slightly (to 15% on average). At
the same time the mean evaporation rate of the smooth wet sur-
face changes only weakly with fetch around the value required
for a symmetric CR. All this is in support of choosing the Penman
equation as an effective practical tool for estimating the potential
evaporation rate in (1) by Brutsaert and Stricker (1979) in their
Advection–Aridity (AA) model, the first published evaporation esti-
mation method that relies on a symmetric CR.

Although the requirement of a constant energy term, Qn (as well
as unchanging atmospheric profiles of wind speed and diffusivity)
for a symmetrical CR seems overly restrictive at the drying land
surface, certain land–atmosphere radiation feedbacks may exist
that can lead to such a near constant Qn. Whether this truly hap-
pens or not in reality or to what degree, and how the violation of
the other requirements above affects the CR in practice will be told
by the future success or failure of the experimental as well as rou-
tine applications of the CR-based evaporation estimation methods.
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