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Abstract

Morton’s proof of Bouchet’s complementary hypothesis has been revisited. The proof’s central assumption is that an increase
in sensible heat from the surface to the air induces a similar increment in the sensible heat transfer from the air to a hypothetical
potential evaporimeter. It is shown that this assumption is not necessary in the derivation. Instead, the complementary
hypothesis under simplified conditions can be obtained with the help of the mass conservation equation for water vapor.
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1. Introduction

Bouchet’s hypothesis (1963), as restated by Morton
(1965), claims that over a large homogeneous surface,
for which any heat or vapor advection is negligible,
the actual areal evaporation (E [LTfl]) and the poten-
tial evaporation (£, [LT™']) are in a complementary
relationship such as

E + E,, = const. (1)

provided the energy balance of the surface is constant
in time. Morton (1965) derived the constant to be
equal to twice the regional wet environment evapora-
tion (E,, [LT']). Generally the potential evaporation
term (E,,) is estimated by the Penman (1948) combi-
nation equation, while for the wet environment
evaporation (E,) term, the Priestley—Taylor (1972)
approach is applied (e.g. Brutsaert and Stricker,
1979; Parlange and Katul, 1992; Kim and Entekhabi,
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1997) which is based on the (assumed constant)
energy balance of the surface.

A basic argument behind Eq. (1) is that, as the
originally wet environment is drying out, less and
less energy is consumed by evaporation and conse-
quently this unused portion of the original energy
becomes fully available to increase potential evapora-
tion, £, by exactly the same amount as E decreased,
while leaving the overall energy budget unaffected
(Bouchet 1963; and more recently Morton, 1983).
While the practical validity of Eq. (1) has been
confirmed by Morton (1983) on a large data set
from four continents, and more recently by Parlange
and Katul (1992); Kim and Entekhabi (1997), no
attempt has been devoted since Morton (1983) to
prove Eq. (1) on a theoretical basis.

Morton (1983) derived Eq. (1) from theoretical
considerations under simplifying conditions. His
proof was based on Bouchet’s (1963) somewhat
heuristic argument above. Below we show that Eq.
(1) can be derived without employing this argument
under conditions described by Morton (1983).
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2. Methodology

Following Morton (1983), we are going to apply the
sensible- (H) and latent-heat (LE) [W m?]) transfer
equations

H= —A@ (2a)
9z

LE = —f % (2b)
9z

over a large uniformly vegetated area with uniform
soil conditions and with negligible heat/vapor advec-
tion. Here A [W m ™' K™ '] is heat-, and fis the vapor-
transfer [W m~' Pa~'] coefficient, @ is potential
temperature [K], e is vapor pressure [Pa] and z desig-
nates the vertical axis of the coordinate system. We
further assume that a constant net available energy
R,—G [W mfz] (where the former is net radiation
and the latter is the soil heat flux term) can be fully
partitioned into sensible and latent heat. Finally, if we
also stipulate that any soil-moisture change in the area
would leave the overall energy balance unaffected, we
can write the energy-balance of the vegetated surface
as

R, — G=H + LE = const. 3)

By arbitrarily choosing two reference levels at fixed
elevations over the surface, the above equations can
be combined into

AL(@L - @U) +fL(eL - eU) = const. (4)

where the subscripts ‘L’ and ‘U’ designate the vari-
able taken at the lower (z = L) or upper (z = U) refer-
ence level, respectively. Note that in deriving Eq. (4)
it has been assumed that the vertical profiles of @ and
e are similar (see Appendix for an explanation). By
introducing the difference operator 8, and assuming
the temporal changes in the transfer coefficients to be
negligible, Eq. (4) transforms into

AL(8O, — 80y) = —f,.(Se;, — dey) (5)

which defines changes in the variables at the two
reference levels to changes in the areal soil moisture.
If the upper reference level is chosen in the top of the
surface sublayer, then the second term on either side
of Eq. (5) becomes negligible (Morton 1983); there-

fore one obtains

86]_ = - i 6@L (6)
fu

which relates changes in vapor pressure and potential
temperature at the lower reference level to changes in
areal soil moisture.

Now let’s consider a hypothetical evaporimeter that
measures potential evaporation (E),) in the area. Using
the elevation (‘P’) of the evaporating surface of our
evaporimeter as a third reference level (z = P), Eq. (5)
can be reformulated using this new reference level in
place of the upper one as

AL(8Op — 80, ) = —f;(dep — dey) @)

The only physically meaningful solution of Egs. (6)
and (7) combined is when dep = 6 @p = 0. Note that
the other algebraic solution, —\/fi = 6ep/6Op, is
physically invalid, since ep= ey, at the surface of
the evaporimeter, which is a monotonic function of
Tp (= Op), the temperature of the evaporating water
surface.

The solution dep = §@p = 0 for the evaporimeter
shows that the surface temperature of the hypothetical
evaporimeter cannot change in response to changes in
areal evaporation (Morton, 1983). Note that when
combining Egs. (6) and (7), it was implicitly assumed
that the evaporimeter due to its hypothetical zero
order size would not change the e and @ values
being measured at the lower reference level.

Assuming that the energy that is being available by
decreasing areal evaporation as a response of depleted
soil moisture is fully used by the evaporimeter,
Morton (1983) showed that Bouchet’s complementary
hypothesis (Eq. (1)) must be true. In other words,
evaporation from a hypothetical evaporimeter would
increase exactly by that amount as areal evaporation
decreased. [Note that this may not be strictly valid for
an evaporation pan, as a substitute for a hypothetical
evaporimeter, where the pan geometry becomes an
additional factor (Brutsaert and Parlange, 1998)].
Below we show that the areal and potential evapora-
tion are indeed complementary, without resorting to
assumptions about the energy transfer between the
drying environment and a hypothetical evaporimeter.
Instead we make use of the mass conservation
equation.
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Fig. 1. Schematics of linear vapor pressure profiles with height above the surface and the corresponding latent heat profiles at two different

times, 7y and #,. L designates the lower, U the upper reference level.

The change in latent heat at the lower reference
level is

_ f1.(ey, — bey) = Ji0er,
C G

where C| is a constant, a function of the height of the
lower and upper reference levels and of the water-
vapor vertical profile. For example, for a logarithmic
vertical vapor profile C is equal to L In(L U™"), where
‘In’ is the natural logarithm (see Appendix). The
change in latent heat at the surface of the evaporimeter
is

SLE,

®)

_ fe(Bep — der) _ —fpdey
G G

where we made use of §ep = 0. The complementary
hypothesis results if 6LE; = —8LEp, which requires
the equality of fiC, and fpC,. By choosing a suitable
lower reference level, the equality of these two terms
can be achieved as is shown below.

The mass conservation equation for water vapor
over a homogeneous surface, with only the x-compo-
nent (u) of the velocity field retained for sake of
simplicity, can be written (e.g. Sutton, 1934; Brut-
saert, 1982) as

il — i(xﬁ) (10)
ox oz oz

where ¢ is specific humidity, and K, is the eddy

diffusivity for water vapor [m* s ']. Over a large

homogeneous field the horizontal differences in g

vanish, which results in the K, dq/Jz term be constant

in the vertical direction. This term is the latent-heat

SLEp

&)

transfer Eq. (2b) divided by the latent heat of vapor-
ization for water and the specific humidity ( = 0.622¢/
P,, where P, is atmospheric pressure) being sub-
stituted for e. Eq. (10) shows that the vertical latent-
heat transfer is constant in the vertical direction for the
surface sublayer over a large homogeneous surface
(Gotz and Rakoczi, 1981) (see Fig. 1 for illustration).
Using this property of the latent-heat transfer we can
write

LE, = LEp (11a)

for all times outside the location of the evaporimeter,
from which it follows that

SLE;, = SLEp (11b)

must also be true for all times. Eq. (11b) can be rewrit-
ten using the reference-level vapor pressure values as
Cofi.deL = C\fp(Oep — Ser) (11c)
where we assumed again that the dey term is negligi-
ble (Fig. 1). By choosing the lower reference level at a
height where originally the vapor pressure is half of
that at the evaporimeter level, the two terms involving
the constants (C; and C,) and the vapor-transfer
coefficients (f; and fp) become equal. This proves
Bouchet’s complementary hypothesis, which says
that 6LE; indeed equals — 6 LEp.

3. Summary and conclusions

The complementary hypothesis, first proposed by
Bouchet (1963), has been derived under simplifying
conditions by Morton (1965, 1983). The present proof
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follows Morton’s (1983) approach, but utilizes the
mass conservation equation in the final steps of the
proof instead of relying on additional assumption of
energy transfer between the environment and a
hypothetical evaporimeter. The proof is based on the
following assumptions: (a) the study area is
sufficiently large, having homogeneous surface and
soil-moisture properties; (b) heat and vapor advection
is negligible to the area; (c) temporal changes in vapor
pressure and potential temperature at the top of the
surface layer are negligible compared to their change
close to the surface; (d) the potential temperature and
vapor pressure vertical profiles are similar; and (e) the
net available energy is constant.

In practical applications one cannot expect all the
above requirements to be met. The net energy term,
R,—G, may easily change with drying conditions of
the environment, still, recent tests of Bouchet’s comple-
mentary hypothesis based on physical (Parlange and
Katul, 1992) and model simulation experiments (Kim
and Entekhabi, 1997) confirm its validity under typical
environmental conditions. For example, Parlange and
Katul (1992) suggested a simple adjustment of Eq. (1)
in the presence of significant heat advection and diurnal
variability of the energy terms.

The purpose of the present study was to show that the
complementary hypothesis can be derived with a smal-
ler number of presumptions than was presented by
Morton (1965, 1983), and by doing so, the basic and
somewhat heuristic argument of Bouchet and Morton
about energy transfer can be avoided.

Acknowledgements

The author is grateful to Charles Flowerday and to
one of the anonymous reviewers for their comments
on the manuscript.

Appendix A

Let us assume that the following equation describes

the vapor pressure profile with elevation (z)
de c
dz z (Al

where c¢ is a constant, to be obtained from measure-

ments. Integrating Eq. (A1) one obtains

7= zoexp( %0 C_ ¢ ) (A2)

or equally

e=¢y+ cln(z—()) (A3)
z

Applying Eq. (A3) over the two reference levels
z=U and z, = L, the constant, ¢, becomes

c= v (A4)

"(v)

from which one can write

de c ey — eL ey — eL
- == = (AS)
dzler” L Lln( L ) c
U

where C is a constant, a function of the two reference
level heights and the vapor pressure profile.
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