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Accounting for Stream–Aquifer Interactions
in the State-Space Discretization of the

Kalinin–Milyukov–Nash Cascade for Streamflow Forecasting
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Abstract: A sample-data system discretization of the continuous Kalinin–Milyukov–Nash cascade is performed in a state-spac
framework allowing for stream–aquifer interactions that include bank storage during flood events and groundwater discharge to
under low-flow conditions. These interactions generally result in faster attenuation of propagating flood waves and in elevated
levels during drought conditions. An example is given that demonstrates how accounting for these processes ensures m
streamflow forecasts. The model is based on a simplified physical description of the processes both in the stream and
stream–aquifer boundary.
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Introduction

The floods of 2002 wreaked havoc all over Central Europe, c
ing mass evacuations, numerous deaths and extensive d
with costs in the billions of euros~Pearce 2002!. The floods wer
triggered by precipitation of unusually high intensity and/o
duration. For example, the Czech Republic experienced
times its normal precipitation for August in just 36 h~Pearce
2002!. Although not yet proven, the floods may have been e
erbated by global warming, resulting in elevated levels of m
water from Alpine glaciers~Pearce 2002!. If one considers tha
10% of Europe’s population lives or works on flood plains~in
Hungary, 25% of a population of 10 million! and that the Danub
the continent’s second largest river after the Volga, had two
year floods in the past 11 years~Pearce 2002!, then one realize
the importance and value of accurate and reliable flood fore
in the region.

The National Hydrological Forecasting Service~NHFS! in
Hungary prepares streamflow forecasts for the Danube an
tributaries every day with 1–3 days of leadtime. The reliabilit
these estimates undoubtedly played a role in ensuring that
gary did not suffer bigger losses in property during the Danu
record-breaking flood of the summer of 2002. By knowing
advance when, where, and at what level the river would c
flood protection works could be planned and organized.
NHFS uses a state-space formulated discretized version o
continuous Kalinin–Milyukov–Nash~KMN ! cascade for stream
flow routing. However, the model, called the discrete linear
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cade model~DLCM!, does not explicitly account for stream
aquifer interactions, and that lack catalyzed the present wo
formulate a version of the state-space framework that would
it possible to include such interactions in future versions o
model.

Sample-Data System Description of Discrete Linear
Cascade Model for Streamflow Forecasting

The DLCM is a discretized version of a cascade of linear re
voirs with inputs and outputs continuous in time. Nash~1957!,
and independently of him, Kalinin and Milyukov~1957!, used
such a cascade for rainfall runoff and flow routing problems
spectively. The linear cascade model is often called the
cascade, but perhaps it is more correct to call it the KMN cas
~Szöllősi-Nagy 1989! in a tribute to the other two hydrologis
who first applied it to flow routing as is explored here. Cu
~1969! pointed out the tight relationship of the KMN cascade
the linear kinematic wave equation, the latter being a first-o
approximation of the Saint–Venant equations that describ
flow in open channels. The linear kinematic wave equation ca
written as

]Q~x,t !

]t
1C

]Q~x,t !

]x
50 (1)

where Q5flowrate @L3 T21#; C5kinematic wave celerit
@L T21#; andx and t5spatial and temporal coordinates, resp
tively. Using a backward-difference scheme in the spatial de
tives, Eq.~1! can be written as

]Q~xj ,t !

]t
52C

Q~xj ,t !2Q~xj 21 ,t !

Dx

5
C

Dx
Q~xj 21 ,t !2

C

Dx
Q~xj ,t ! (2)

with xj5 j Dx; and j 51,2,. . . ,n. Eq. ~2! may represent a give

stream reach with no lateral inflow, divided inton sections.
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For the state-space formulation of Eq.~2!, one can defin
the state variable asQ(t)5@Q(x1,t),Q(x2,t), . . . ,Q(xn,t)#8
5@Q1(t),Q2(t), . . . ,Qn(t)#8 where the prime denotes the tra
pose of the vector. By denoting the inflow to the reach asu(t)
5Q(x0 ,t) one can write Eq.~2! as

3
dQ1~ t !

dt

dQ2~ t !

dt

]

dQn~ t !

dt

4 53
2

C

Dx
0 ¯ 0

C

Dx
2

C

Dx
� ]

� � 0

0
C

Dx
2

C

Dx

4 F Q1~ t !
Q2~ t !
]

Qn~ t !
G

1F C

Dx

0

]

0

G u~ t ! (3)

which in a more succinct form becomes

Q̇~ t !5F= Q~ t !1Gu~ t ! (4a)

where the dot denotes the temporal change in the state-variaQ.
Eq. (4a) is the state equation of a linear, continuous dyna
system with time-invariant coefficient matrices. HereF= is the
system matrix andG the distribution vector~Szöllősi-Nagy
1989!. The output equation of the system can be written as

Qout~ t !5HQ~ t ! (4b)

with H in our example defined asH5@0,0,. . . ,1#, a 13n vector,
so that Eq. (4b) provides a scalar output:Qout(t)5Q(xn ,t).

For a linear reservoir, the outflow is linearly related to
stored water,Q(t)5kS(t), wherek21 ~T! is the storage coeffi
cient. Assuming that each subreach behaves as a linear res
with C/Dx5k, Eq. ~3! transforms into

3
dS1~ t !

dt

dS2~ t !

dt

]

dSn~ t !

dt

4 5F 2k 0 ¯ 0

k 2k � ]

� � 0

0 k 2k

GF S1~ t !
S2~ t !
]

Sn~ t !
G1F 1

0
]

0
G u~ t !

(5)

with H5@0,0,. . . ,k# in Qout(t)5HS(t). Eq.~5! is the state-spac
representation of the continuous KMN cascade~Szöllősi-Nagy
1989!.

Due to the fact that streamflow measurements become di
values on the digital computer, a discretization of Eq.~5! must be
performed to have a streamflow model compatible with the
crete nature of its inputs. Szo¨llősi-Nagy ~1982! performed the
discretization of Eq.~5! using a pulse-data system, while Szila
~2003! did the same for a sample-data system and showed
this latter approach is a generalization of the former, meaning
if the discretization is done with the sample-data system
without changing the model structure, one can simply use it
pulsed data as well, typically with precipitation data, most o
available in a pulsed format. A sample-data system assume

the input variable changes linearly between successive discrete
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data values, while the pulse-data system assumes a constan
~e.g., Chow et al. 1988!. Szilagyi ~2003! demonstrates the ste
involved with the derivation of discretizing Eq.~5! in a sample
data system. Here we show only the result of the discretiz
through which Eq.~5! transforms into

S~ t1Dt !5F= ~Dt !S~ t !1G1~Dt !u~ t1Dt !2G2~Dt !u~ t ! (6)

whereF= 5state-transition matrix; andG1 andG25input-transition
vectors. Then3n matrix of F= is made up of the following term

F= ~Dt !5F e2kDt 0 ¯ 0

kDte2kDt e2kDt
� ]

] ] � 0

~kDt !n21

~n21!!
e2kDt

~kDt !n22

~n22!!
e2kDt

¯ e2kDt
G
(7)

while G1 andG2 are

G1~Dt !53
1

k

G~1,kDt !

G~1! F11
e2kDt

G~1,kDt !
2

1

kDt G
1

k

G~2,kDt !

G~2! F11
kDte2kDt

G~2,kDt !
2

2

kDt G
]

1

k

G~n,kDt !

G~n! F11
~kDt !n21e2kDt

G~n,kDt !
2

n

kDt G
4 (8)

and

G2~Dt !53
1

k

G~1,kDt !

G~1! F e2kDt

G~1,kDt !
2

1

kDt G
1

k

G~2,kDt !

G~2! FkDte2kDt

G~2,kDt !
2

2

kDt G
]

1

k

G~n,kDt !

G~n! F ~kDt !n21e2kDt

G~n,kDt !
2

n

kDt G
4 (9)

respectively. The function, denoted byG within G1 andG2 , is the
incomplete~with two arguments, i.e.,G(a,j)5*0

je2tta21dt), or
complete~with one argument, i.e.,G(a)5*0

`e2tta21dt), gamma
function, respectively. All system matrices are time invariant
only depend on the magnitude of the sampling intervalDt. Note
that time now increases with an increment ofDt. Using a recur
sion in Eq.~6!, the output att5mDt becomes

Qout~mDt !5HS~mDt !5HF= m~Dt !S~0!1 (
i 50

m21

HF= m212 i~Dt !

3@G1~Dt !u@~ i 11!Dt#2G2~Dt !u~ iDt !# (10)

Eq. ~10! also shows how storage~S! changes in time wit
discrete time increments~once the initial condition is defined
t50) in response to discrete inputs and assuming a linear c
in the input variable between its discrete values. HereF= m(Dt)
5F= (mDt) ~Szöllősi-Nagy 1982!.

The advantage of using a state-space approach over a n
cal solution of Eq.~1! is at least fourfold:~1! the numerical solu
tion of Eq. ~1! with a givenDt will depend on four paramete
the temporal and spatial increments used during the integ
that will influence the magnitude of the numerical diffus
~Cunge 1969!; the error limit of convergence; and the cele

parameter (C), which needs to be optimized for a given input–
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output discrete time series. In the state-space approach, the
tion @Eq. ~10!# requires only algebraic manipulations which
not involve any convergence of trial values, and it depend
only two parameters,n andk, to be optimized for a given input
output sequence;~2! in the state-space approach, once a solu
is obtained for a givenDt, any new solution with a differentDt
can be obtained from the first result by a linear transforma
without the need of redoing the original calculations~Szöllősi-
Nagy 1982!, unlike in the case of numerical solutions;~3! when
minimizing model error, an important task in operational forec
ing, one can use an optimal filter~Kalman 1960; Kalman an
Bucy 1961! in a straightforward manner provided the model i
a state-space form;~4! the inverse problem in forecasting, t
so-called input detection~i.e., finding the input sequence to
given output sequence!, which often is needed to fill gaps
missing data in streamflow series, is again a simple alge
manipulation with the state-space framework~Szöllősi-Nagy
1982!.

Formulation of Simplified Stream–Aquifer
Interactions

As the floodwave travels in the stream, part of its volume is b
stored in the streambank due to a reversed hydraulic gra
between groundwater and streamwater. This causes a flatten
the propagating floodwave in addition to diffusional effects.
stored water in the banks may later be released, together
baseflow, into the stream, when the hydraulic gradient cha
back to its normal position for groundwater-fed streams. In ca
ments where infiltration rates are high, such as the Sandhil
gion of Nebraska, a significant portion of the streamflow@as high
as 90%~Szilagyi et al. 2003!# may be maintained year round
such groundwater discharge~i.e., baseflow! to the stream. How
ever, not all the water stored in the streambank may find its
back to the stream, because varying parts of it may be taken
vegetation and released to the air via transpiration.

Accounting for this dynamic interaction between stream
aquifer, though it be simplistic, will improve streamflow fo
casts. Here the objective is to find a description that fits into
existing structure of the state-space model when allowing
stream–aquifer interactions, and to do it with a minimal num
of additional parameters. Parameter parsimony is an impo
requirement of operative forecasting models, especially whe
parameters must be optimized and from time to time need u
ing for a large number of gaging stations. For example, the s
space forecasting model of the Danube and its tributaries in
gary contains 50 plus gaging stations. If only four parame
need to be optimized and updated for each station in the mo
immediately means 200 plus parameters. The problem is fu
complicated by the common practice that only stream level
monitored, while groundwater elevations adjacent to gaging
tions are not, nor is information typically available on the ge
etry and hydraulic properties of the aquifer. This complicates
validation of any model that describes stream–aquifer inte
tions. The only venue to pursue, and also the most importan
for the purpose of streamflow forecasting, is to check if the
ployed model, however simplistic, improves forecasts or
These conditions must be kept in mind when judging the b
derived description of stream–aquifer interactions to be incl
in the state-space model of constant coefficient matrices.

Contribution of stream-aquifer interactions to flood routin

well established~e.g. Pinder and Sauer 1971; Zitta and Wiggert
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1971; Moench et al. 1974; Hunt 1990; Hantush et al. 2
2002!. Here we follow the problem description of Hantush e
~2002! by writing out the linearized version of the Boussin
equation

]h~y,t !

]t
5D

]2h~y,t !

]y2 (11)

with initial and boundary conditions

h~y,0!50 (12)

q~ t !52T
]h~0,t !

]y
5PK8

H~ t !2h~0,t !

b
(13)

h~`,t !50 (14)

whereh(y,t) @L# denotes the groundwater-table elevation rela
to its initial equilibrium position when the groundwater table
assumed to be horizontal and at the same elevation wit
streamstage. D @L2 T21#5aquifer diffusivity; D5TSy

21

5Kh0Sy
21 , where T @L2 T21#5 its average transmissivity,K

@L T21# is saturated hydraulic conductivity;h0 @L#5average
saturated thickness; andSy ~-! is the specific yield of the unco
fined aquifer.H(t) @L#5streamstage relative to its initial equil
rium position;P @L#5one half of the average wetted perimete
the stream;K8 @L T21#5mean saturated hydraulic conductiv
of the streambed with an average thickness ofb @L#; and q(t)
@L2 T21#5resulting flowrate between the stream and the aq
over a unit length. See Fig. 1 for a schematic of the situatio

The following assumptions were made in formulating
problem ~Hantush et al. 2002!: ~1! the aquifer is homogeneo
with a horizontal bed;~2! groundwater-table fluctuations are sm
compared to the average saturated thickness (h0) of the aquifer
~3! storage in aquifer sediments below the stream is neglig
~4! water-level fluctuations along the stream reach are small
pared to the average stageH(t).

Eqs.~11!–~14! can be coupled to streamflow through the
lowing continuity equation for each subreach of the stream:

dSj~ t !

dt
5Q~xj 21 ,t !2Q~xj ,t !22qL~ t ! (15)

where it was considered that the stream has two banks an
qL(t) @L3 T21#, which is q(t) integrated over the length of t
subreach, changes signs between Eqs.~13! and ~15!, because
loss of water to the aquifer is a gain to the stream.

As can be seen from Eqs.~11! and~13!, qL(t) depends on th
combination of two parameters:D and g(5PK8b21). The ob-
jective here is not an accurate description of the elevation o
groundwater table through time@h(y,t)#, but simply the estima
tion of qL(t) in terms of stream storage~if possible!, so that the
state equation@Eq. ~5!# could be augmented by this term. A
consequence, a combination of theD and g parameter values

Fig. 1. Schematics of stream–aquifer system
sought that is suitable for the estimation ofqL(t), without much

HYDROLOGIC ENGINEERING © ASCE / MARCH/APRIL 2004 / 137
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concern for how accurate the correspondingh(y,t) values are. In
fact, we will postulate that the diffusivity of the aquifer is co
sidered large enough for our purposes that any water that cr
the streambed from the stream is distributed so quickly in
semi-infinite aquifer that the change inh(0,t) can be considere
negligible and so it becomes a constantch .

To illustrate that such a deliberate combination of theD andg
parameter values is meaningful, Eqs.~11!–~15! were numerically
solved in a coupled stream–aquifer finite-elements model
inflow I (t) to the stream reach~having a rectangular cross sect
of unit length and width, coupled to a 10 m wide aquifer! defined
as ~Hantush et al. 2002!

I ~ t !5NImaxe
2dt@12cos~vt !# 0<t<DT (16a)

I ~ t !50 t.DT (16b)

where I max52 m3 h215peak inflow rate;DT55 h5duration of
the floodwave; v52p/DT, N5edtc@12cos(vtc)#

21 with tc

51.25 h, the time when peak inflow occurs; andd
5v cot(vtc / 2). The stream reach was considered to act as
ear reservoir withk2155 h.

Fig. 2 displays the two solutions: one with the original,
boundary condition@Eq. ~13!# and the other, with the simplifie
boundary condition

q~ t !5g@H~ t !2hc# (17)

wherehc50 was chosen for clarity. In the first case scenario
parameter values were prescribed asg51 m h21 and D
50.5 m2 h21, while in the second case,D (5100 m2 h21) was
chosen large enough that theh(0,t)'hc constant assumptio
could be met. The value of theg parameter was systematica
changed in the model to obtain an outflow from the reach clo
the original one, and it became 0.4 m h21. Note that the flux

Fig. 2. Numerical solution of Eqs.~11!–~15! with complete and s
across stream–aquifer interface;~c! accumulated flux across strea
to stream. With complete boundary conditiong51 m h21, D50.5 m2
across the stream–aquifer interface is regulated only by this

138 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRIL
single parameter in the simplified boundary condition case. In
latter case now, all the water is lost to the aquifer because st
flow does not sink below the starting zero value, while in
complete boundary-condition case, water from the aquife
flowing back to the stream after some time, as expected.
Fig. 2 was meant to illustrate for our streamflow forecasting
poses, using an existing structure of a state-space approach,
by properly choosing the value of theg parameter, the simplifie
boundary condition@Eq. ~17!# in itself can result in a stream-rea
outflow that approximates an outflow obtainable with the orig
and correct boundary condition in combination with the linear
Boussinesq equation.

Eq. ~17! can be written as

q~ t !5g@H~ t !2hc#5cg@s~ t !2s0# (18)

wherecg @T21#5constant;s(t) @L2#5water stored in the strea
per unit length, considered proportional to streamstage; as0

5constant reference value of storage. Inserting Eq.~18! into Eq.
~15! results in

dSj~ t !

dt
5Q~xj 21 ,t !2~k1g!Sj1C0 (19)

whereg @T21# and C0 @L3 T21# are constant terms, namelyg
52cg andC05gS0 . With Eq. ~19! the state equation of the co
tinuous KMN cascade can be obtained which now includes
plified stream–aquifer interactions.

State-Space Discretization of Kalinin–Milyukov–
Nash Cascade with Stream–Aquifer Interactions

Applying Eq.~19! over a series of stream reaches, one obtain

ed boundary conditions:~a! in- and outflow from the reach;~b! flux
uifer interface;~d! water levels in stream and in aquifer,h(0,t), adjacen
ndg50.4 m h21, D5100 m2 h21 with simplified boundary conditio
implifi
m–aq
h21, a
extended form of the KMN cascade
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dS1~ t !

dt

dS2~ t !

dt

]

dSn~ t !

dt

4 5F 2~k1g! 0 ¯ 0

k 2~k1g! � ]

� � 0

0 k 2~k1g!

GF S1~ t !
S2~ t !
]

Sn~ t !
G

1F u~ t !1C0

C0

]

C0

G (20)
that now accounts for flow from the stream to the aquifer when-

n of

JOURNAL OF
evergSj.C0 and the opposite direction otherwise. In both ca
the flux across the stream–aquifer boundary is directly pro
tional to the magnitude of this difference. Note that Eq.~20! now
has a source term,C0 , which ensures that during a drought
riod, the stream collects groundwater; thus, a downstream s
of the stream can have larger accumulated flow volumes ove
drought period than the upper section, reflecting what gene
happens in a groundwater-fed stream. Also, whenevergSj.C0 ,
the stream has a sink expected to result in decreased pe
values. The model has four parameters:k, n, g, andC0 . If the
values ofg andC0 are chosen correctly, then over a suitably l
period the stream must always gain water from the aquifer d
recharge to the groundwater.
During discretization the new state-transition matrix becomes
F= ~Dt !5F e2(k1g)Dt 0 ¯ 0

kDte2(k1g)Dt e2(k1g)Dt
� ]

] ] � 0

~kDt !n21

~n21!!
e2(k1g)Dt

~kDt !n22

~n22!!
e2(k1g)Dt

¯ e2(k1g)Dt
G (21)

while theG1 andG2 vectors transform into

G1~Dt !53
1

~k1g!

G~1,~k1g!Dt !

G~1! F11
e2(k1g)Dt

G~1,~k1g!Dt !
2

1

~k1g!Dt G
k

~k1g!2

G~2,~k1g!Dt !

G~2! F11
@~k1g!Dt#e2(k1g)Dt

G~2,~k1g!Dt !
2

2

~k1g!Dt G
]

kn21

~k1g!n

G~n,~k1g!Dt !

G~n! F11
@~k1g!Dt#n21e2(k1g)Dt

G~n,~k1g!Dt !
2

n

~k1g!Dt G
4 (22)

and

G2~Dt !53
1

~k1g!

G~1,~k1g!Dt !

G~1! F e2(k1g)Dt

G~1,~k1g!Dt !
2

1

~k1g!Dt G
k

~k1g!2

G~2,~k1g!Dt !

G~2! F @~k1g!Dt#e2(k1g)Dt

G~2,~k1g!Dt !
2

2

~k1g!Dt G
]

kn21

~k1g!n

G~n,~k1g!Dt !

G~n! F @~k1g!Dt#n21e2(k1g)Dt

G~n,~k1g!Dt !
2

n

~k1g!Dt G
4 (23)
s in
un-

the
so that the new state equation is

S~ t1Dt !5F= ~Dt !S~ t !1G1~Dt !u~ t1Dt !2G2~Dt !u~ t !1V
(24)

where thei th component of the newn31 vector term,V, is

V i5C0(
j 51

i
ki 2 j

~k1g! i 2 j 11

G~ i 2 j 11,~k1g!Dt !

G~ i 2 j 11!
(25)

See the Appendix for the steps involved with the derivatio
the new state equation. By recursion in Eq.~24!, the output of the
extended discrete cascade att5mDt can be calculated as
Qout~mDt !5HS~mDt !5HF= m~Dt !S~0!1 (
i 50

m21

HF= m212 i~Dt !

3@G1~Dt !u@~ i 11!Dt#2G2~Dt !u~ iDt !1V# (26)

where theH vector is the same as previously. Note that ifg50,
the original cascade is recaptured.

Model Demonstration and Conclusions

The effect of including simplified stream–aquifer interaction
the state-space formulation of the DLCM of the NHFS of H
gary is demonstrated in Figs. 3 and 4.

In Fig. 3 the daily instantaneous streamflow values of

Danube, measured at 6 a.m. each day at Baja, about 200 km

HYDROLOGIC ENGINEERING © ASCE / MARCH/APRIL 2004 / 139



and forecast

Fig. 3. Concurrent values of measured streamflow of Danube at 6 a.m. at Budapest and at Baja for April 13, 1991–May 17, 1992.1–2–3-day
forecasts of original model for Baja assumed perfect forecasts of similar lead times for Budapest. See Table 1 for model parameters
statistics
992. The
l parameters
Fig. 4. Concurrent values of measured streamflow of Danube at 6 a.m. at Budapest and at Baja for April 13, 1991–May 17, 1
1–2–3-day forecasts of extended model for Baja assumed perfect forecasts of similar lead times for Budapest. See Table 1 for mode
and forecast statistics
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downstream of Budapest~with negligible tributary inflow to th
reach!, is forecasted by the original model using values at B
pest measured concurrently. For the 1 day forecast at Baja,
sured values at Budapest on the previous and the forecaste
are used, and similarly, for the 2 day forecast, measured valu
Budapest on the forecasted day plus the previous two day
used, and so on for the 3 day forecast. This simulates a ‘‘pe
forecast’’ scenario for Budapest which, however, is never
case, but by doing so, any systematic errors in the forecas
the upstream station can be prevented from propagating t
downstream one. This practice of using forecasts for an ups
station to predict values at a downstream location is stan
routine at hydrological services where the objective is to ut
every available bit of information that may improve forecasts
a given location. Depending on the accuracy of the forecas
an upstream location, forecasting errors for a downstream
tion generally do improve. The two parameters of the disc
cascade,k and n, were optimized by trial and error when mi
mizing a mean root-square error~MRSE! term between forecas
and observations combined for all three leadtimes. This m
that an MRSE term was calculated for each lead time ove
period of observations and then their sum calculated. An op
value ofk andn were decided when this sum reached a minim
from systematically chosen trial values ofk andn. An extra ad
vantage of analytical solutions, in addition to that already m
tioned, is that they can be recalculated very fast with diffe
parameters, which is of importance in operative forecasting
pecially when a large number of gaging stations are involve

The same was performed with the extended cascade’s
parameters. See Fig. 4 for improved model performance
Table I for the optimized values of the parameters and erro
tistics. As evident in Fig. 3, the original model undershoots
streamflow during low-flow periods, since there is no source
involved that would account for baseflow that becomes dom
during drought periods. The extended model, however, in F
can account for this extra source of water supplied to the st
by the aquifer through its source termC0 . Similarly, the origina
model overshoots the largest, 15 year flood of Fig. 3, while
extended model~Fig. 4! accounts for bank storage during flo
events and so provides a more accurate peakflow forecast
that the models were run without being updated each day thr
the error term.

The initial value ofS(0) was calculated for each model us
¨ ˝

Table 1. Optimized Parameter Values and Model Performa
Statistics

Parameter Original model Extended mod

nopt 2 2

kopt (day21) 0.9 0.9

gopt (day21) — 0.024

C0 (m3 s21) — 100.8

MRSE (m3 s21) 224.45 151.29

NSEC

%!5100F 12
(~Q̂i2Qi !

2

(~Qi2Q̄!2
G

98.36 99.26

Note: Mean root-square error~MRSE!, and Nash–Sutcliffe efficiency cr

terion ~NSEC! for original and extended discrete cascades. HerQ̄
52,255 m3 s21 is mean streamflow~sample size5400) at Baja. Hat de
notes forecasted streamflow values.
the inversion described by Szollosi-Nagy ~1987!. By including

JOURNAL OF
y
t

simplified stream–aquifer interactions in the streamflow fore
ing model, an improvement of 30% was achieved~Table 1! in the
MRSE term for the chosen period of observations. The fore
improvement is also reflected in the Nash–Sutcliffe efficie
criterion ~NSEC! value, which increased by about a percen
point ~Table 1!, which is significant when the NSEC value
already close to 100%.

In summary, a discrete state-space formulation of the con
ous KMN cascade was introduced, currently used by the NHF
Hungary for operational streamflow forecasting for the Dan
and its tributaries. The discretization uses a sample-data s
framework. The model was extended to account for simpl
stream–aquifer interactions and the corresponding state eq
was derived. Model performance was demonstrated on a 20
reach of the Danube in Hungary with negligible tributary infl
The extended model resulted in improved error statistics.

In operational use, the parameters of a forecasting mode
be updated from time to time or even daily~Young 2002! to
reflect short-term, seasonal, or longer-term changes in the w
shed. Such investigations are outside the scope of the p
study. For example, if theC0 parameter turns out to display s
sonal changes and if those changes are deemed significant e
to affect forecast accuracy in operational use, its value can a
updated, together with other parameter values, with the req
frequency. Here the emphasis was on modifying an existing
space structure of a hydrological model that is currently in op
tional use to allow for the inclusion of some simplified form
stream–aquifer interactions in the hope that doing so will e
tually result in improved operational forecasts.
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Appendix

Derivation of the state-transition matrixF= in Eq. ~6! can be found
in Szöllősi-Nagy~1982!. The same steps were required for de
ing F= of the extended model in Eq.~24!. For the derivation of th
input-transition vectors,G1 , G2, and V, one can start from th
following equation~Szöllősi-Nagy 1982! representing a strea
reach

S~ t1Dt !5F= ~Dt !S~ t !1E
t

t1Dt

F= ~ t1Dt2t!G= I ~t!dt

5F= ~Dt !S~ t !1E
t

t1Dt

F= ~ t1Dt2t!

3G= @u~t!1C0 ,C0 , . . . ,C0#8dt (27)

where the prime denotes the transpose,G= 5n3n input-
distribution matrix, which now becomes an identity matrix du
a vector inputI (t), and where it will now be assumed that
upstream flow valueu(t) changes linearly between measured
ues att andt1Dt. Note that Szo¨llősi-Nagy~1982! gave the der
vation for a scalar-valued inputu(t), which is constant in th
interval @ t,t1Dt) that is closed from the left and open from
right.

For sake of clarity, the steps will be demonstrated on thi th
element of the vectors involved. Thei th element of Eq.~27!,
provided the system is relaxed at timet @i.e., S(t)50], can be

written as
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in the
ing a
of

,

Si~ t1Dt !5E
t

t1DtFF i ,1~ t1Dt2t!u~t!

1C0(
j 51

i

F i , j~ t1Dt2t!Gdt (28)

where the lower-triangular property ofF= was utilized.
The first term on the right-hand side~r.h.s! of Eq. ~28! can be

written as

E
t

t1Dt

F i ,1~ t1Dt2t!u~t!dt

5E
t

t1Dt

F i ,1~ t1Dt2t!Fu~ t !1
u~ t1Dt !2u~ t !

Dt
~t2t !Gdt

5E
t

t1DtFF i ,1~ t1Dt2t!u~ t !1F i ,1~ t1Dt2t!

3
u~ t1Dt !2u~ t !

Dt
t2F i ,1~ t1Dt2t!

3
u~ t1Dt !2u~ t !

t Gdt (29)

Dt

n

obtains Eq.~30! with C0 replacingu(t), the latter being just a
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where the sample-data system framework was used to obta
u(t) values between two discrete measurements. Perform
change of variables,t* 5t1Dt2t, the first term on the r.h.s.
the integral transforms into

u~ t !
ki 21

~ i 21!! E0

Dt t*
( i 21)

ec* t* dt*

5u~ t !
ki 21

~k1g! i

1

~ i 21!!
G~ i ,~k1g!Dt !

5u~ t !
ki 21

~k1g! i

G~ i ,~k1g!Dt !

G~ i !
(30)

whereF i ,1 from Eq. ~21!, andc* 5(k1g) were used. Similarly
the third term of Eq.~29! will yield

ki 21

~k1g! i

t@u~ t !2u~ t1Dt !#

Dt

G~ i ,~k1g!Dt !

G~ i !
(31)

whereas the second term becomes
ki 21

~ i 21!!

u~ t1Dt !2u~ t !

Dt E
0

Dt t*
( i 21)

ec* t* ~ t1Dt2t* !dt*

5
ki 21

~ i 21!!

u~ t1Dt !2u~ t !

Dt F t1Dt

~k1g! i G~ i ,~k1g!Dt !2E
0

Dt t*
i

ec* t* dt* G
5

ki 21

~ i 21!!

u~ t1Dt !2u~ t !

Dt

1

~k1g! i F ~ t1Dt !G~ i ,~k1g!Dt !2
1

k1g
G~ i 11,~k1g!Dt !G

5
ki 21

~k1g! i

u~ t1Dt !2u~ t !

Dt

1

G~ i ! F ~ t1Dt !G~ i ,~k1g!Dt !2
iG~ i ,~k1g!Dt !

k1g
1@~k1g!Dt# ie2(k1g)DtG (32)
al

del
where the algebraic identitiesG( i 11,x)5 iG( i ,x)2xie2x and
G( i )c2 i5*0

`xi 21e2cxdx were used~Abramowitz and Stegu
1965!.

After combining all three terms, one obtains

E
t

t1Dt

F i ,1~ t1Dt2t!u~t!dt

5
ki 21

~k1g! i

G~ i ,~k1g!Dt !

G~ i !

3@@11L i~Dt !#u~ t1Dt !2L i~Dt !u~ t !# (33)

with L i being

L i~Dt !5
@~k1g!Dt# i 21e2(k1g)Dt

G~ i ,~k1g!Dt !
2

i

~k1g!Dt
(34)

When j 51 in the second term of the r.h.s. of Eq.~28! one
constant, sincet is set now. By keeping track of the value ofj in
Eq. ~28! behind the summation sign, one obtains Eq.~25!. The i th
line of G1 , G1

( i ) is simply defined as

G1
( i )~Dt !5

ki 21

~k1g! i

G~ i ,~k1g!Dt !

G~ i !
@11L i~Dt !# (35)

and similarly,G2
( i ) as

G2
( i )~Dt !5

ki 21

~k1g! i

G~ i ,~k1g!Dt !

G~ i !
L i~Dt ! (36)
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