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ABSTRACT 

Szilagyi, J., 1992. Why can the weighting parameter of the Muskingurn channel routing method be 
negative? J. Hydrol., 138: 145-151. 

For a typical river reach, observations often show that the peak value of the outflow is lower than the 
synchronous value of the inflow. This is caused by the adoption of simplified rating curves or/and the 
discrete nature of water stage measurements. In this situation, the most accurate estimation of storage in 
the reach, using the conventional Muskingum method, is when the weighting parameter 0 is negative. 

I N T R O D U C T I O N  

The conventional Muskingum channel routing method estimates the 
storage in a river reach at any given time as follows (Nash, 1959; Dooge 
et al., 1982): 

S = K [ 0 - I +  (1 - 0) .Q]  (1) 

The rate of change of storage within the reach at any instant is given by 

dS/dt = I -  Q (2) 

Substituting eqn. (1) into eqn. (2), and integrating results in the solution 

Q(t) - I - o  K(1 - 0 )  + 1 - 0 K ( 1 -  0) I(0 

[ t - r ]  0 I(t) (3) 
x exp K(1 - - 0 )  dz 1 - 0 
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NOTATION 

C, the ith coefficient in a finite difference scheme 
I inflow 
lr reduced inflow 
K storage coefficient equal to the propagation time of discharges 
Q outflow 
Q, reduced outflow 
Q0 initial steady flow rate 
r dimensionless time interval ratio 
S storage volume 
t time 
At time interval of discretization 
0 dimensionless weighting parameter 
r dummy variable of integration 
I[ absolute value of quantity between lines 

where Q0 = I(0) = Q(0) is the initial condi t ion  (Chang  et al., 1983). Wi thou t  
loss o f  generali ty,  reduced discharges are in t roduced  by subtract ing the initial 
s teady flow, Q0, f rom the inflow and  outf low values. The solut ion of  the 
reduced system with the initial condi t ion  Ir(0) = Qr(0) = 0 becomes 

i [ t -  r ] 0 It(t) (4) 1 1 Ir('c) exp K(1 - 0) dr  1 - 0 Qr(t) - 1 - 0K(1  - 0) 0 

Provided 0 < 0 ~< 1, the last term of  the solut ion reduces the outflow, thus 
indicat ing the possibility o f  Q(t) < Qo, or Qr(t) < 0. In the case 0 ~< 0, such 
a negative dip in the outf low does not  occur  (Chang  et al., 1983). 

THE EFFECT OF THE MEASUREMENT PROCEDURE ON THE VALUE OF 0 

A general case is shown in Fig. 1, where the storages in the reach are seen 
to increase up to t ime t2. I f  0 = 1, then eqn. (1) reduces to S = K .  L i.e. the 
peak of  the storage is at tl. I f  0 = 0, then eqn. (1) yields S = K .  Q i.e. the 
peak of  the storage is at t3. I f  the appropr ia te  value for 0 is chosen,  where 
0 < 0 < 1, then the occurrence o f  the m a x i m u m  value o f  the storage S at the 
correct  point  in time, i.e. at t2, can be achieved. 

An  al ternat ive s i tuat ion depicted in Fig. 2, where the storage peak time t, 
occurs after  the outf low peak time t 3, can often be observed in practice. 

Fo r  operat ional  river forecasting,  stages are recorded and  subsequent ly  the 
cor responding  discharges are deduced with the help o f  a simplified rat ing 
curve which does no t  conta in  a loop. Thus  dur ing  the time interval t3-t2, of  
Fig. 2, the stages are falling at bo th  the inflow and  outf low sections. As a result 
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Fig. 1. Typica l  flood hyd rog raphs  for a r iver  reach, wi th  t L < t 2 < &. 

of the simplification of the rating curve, the corresponding discharges are also 
decreasing in this time interval. However, over the same time interval, the 
stored water volume S is increasing until time t 2. Provided the river reach in 
question is short, such that the water surface profile between the upstream and 
downstream sections of the reach at any given time can be approximated by 
a straight line, then a physical contradiction arises. Namely, it is impossible 
that the storage S increases monotonically over the time interval t3 - t  2 while 
simultaneously the water surface level drops monotonically over the whole 
length of the reach. 

However, if an accurate rating curve which contained a loop were applied 
instead, then the peak time t 3 of the outflow would occur after the peak time 
t2 of the storage S, as shown in Fig. 1. 

The situation can also arise where an appropriate (more realistic) rating 
curve is available but where the stages are measured at discrete time steps, 
which gives rise to errors in the interpolation procedure. In reality, therefore, 
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with tl < t 3 < t 2. 

the outflow already exceeeds the inflow somewhere within the time interval 
t a - t  2 of  Fig. 2, so that the situation presented in Fig. 1 actually occurs. 

In all the cases when hydrographs similar to those shown in Fig. 2 are 
present, only by using a negative 0 value can it be ensured that the estimated 
storage peak follows the inflow and outflow maxima in time. 

This can be proved as follows. Let us suppose 0 < 0, so that 

S = K [ O . I  + (1 - 0 ) . Q ]  = K [ [ O t ' ( Q  - I )  + Q] (5) 

From Fig. 2 it can be seen that until time t2, Q < /, so that the term 
10l" (Q - I )  is negative. The maximum value of  the stored water volume S 
can occur after the time t3 of  the peak outflow provided the value of  the term 
[10l" (Q - I)1 is decreasing more rapidly in time than the value of  Q. This 
condition is ensured by using an appropriate negative value of  0. 

A practical example of  the application of  such an appropriate negative 
value of  0 (where 0 = - 1.83, obtained by the least squares method),  is shown 
in Fig. 3, where eqn. (1) is used to obtain the 'estimated' storage Se, and a 
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Fig. 3. Synchronous discharges of the River Danube at Budapest (upper station, continuous line) and at 
Dunaujvaros (lower station, dots) in discrete time steps (At = 12h)) as well as the calculated (S¢) and 
estimated storage (S~). 

simple finite difference form of the continuity eqn. (2) is used iteratively to 
obtain the actual 'calculated' storage S c. 

Let us consider what happens if 0 with a value between zero and one is 
applied instead of the required negative value. In this case, the denominator 
of the first term in eqn. (4) is decreased. Thus the value of the term 
(1/(1 - 0) .  (l/K(1 - 0)) is increased, even more so because the maximum of 
the estimate storage is shifted back in time compared with the real storage 
peak so that the value of  the parameter K is also decreased, although K 
changes to a lesser extent than 0. At the same time the term 

0 I~ ( 0  exp K(1 - 0 

is decreased because of 0 being in the exponent, so that the value of the whole 
first term in eqn. (4) can decrease while that of the second term of the equation 
increases. Thus a greater value (than the corresponding actual value) for one 
term is subtracted from a smaller amount (than the corresponding value) for 
the other term, which may result in a negative dip in outflow. 
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THE EFFECT OF THE NEGATIVE 0 WEIGHTING PARAMETER ON THE 
OPTIMIZATION OF THE PARAMETERS OF THE CHANNEL ROUTING EQUATION 

The continuity eqn. (2) is often written in the form of  the central difference 
scheme (Shaw, 1983): 

St+l -- St [t+, q- It Q,+, + Q, 
- ( 7 )  

At 2 2 

Substituting eqn. (1) into eqn. (7) yields (Cunge, 1969; Ponce, 1979; Perumal, 
1989) the well-known channel routing equation: 

Q,+, = (C , - I , )  + (C2"/ ,+,)  + (C3"Qt) (8) 

where, for a conservative system, 

C~ + C2 + C 3 = 1 (9) 

and 

r + 2 0  
Ci = (10) 

r + 2(1 -- 0) 

r -- 20 
(72 = r + 2(1 -- 0) (11) 

- - r  + 2(1 -- 0) 
(73 = r + 2(1 -- 0) (12) 

with 

r = A t /K  (13) 

It is easy to see that the values of  Ci - s less than - 1 or greater than + 1 
are excluded whatever negative value is assigned to the 0 weighting parameter.  
This result is important  because in practice the Ci values are optimized, and 
in the case when negative 0 value ensures the most accurate estimation of  the 
storage, and through this the most accurate forecasting of  the discharges of  
the downstream section of  the reach in question, the interval within which 
Ci - s values are optimized need not be extended, and thus computat ion time 
increased. 

CONCLUSIONS 

The opt imum value of  the 0 weighting parameter  can be negative not only 
for reasons inherent in the Muskingum channel routing methods itself 
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(Dooge, 1973; Ponce and Theurer, 1980; Strupczewski and Kundzewicz, 
1980), but also because of inadequacies of the techniques applied for 
measuring water stages or/and calculating corresponding discharges. 

It is worth mentioning that a specific river system may have complex 
responses from event to event which will not be adequately described by the 
fixed parameters and linear representation of the Muskingum routing 
method, even if a negative parameter value helps in reconstituting a specific 
event. Other routing methods using a non-linear approach or representing 
more of the equations of motion are available and should be considered, when 
required by the circumstances of an application. 
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