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Land Atmosphere Interactions Impact on Extreme Events
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While land-atmosphere coupling plays a role in these events, consistent
large-scale forcing is also necessary



CTP-HI are used to classify these regimes

CTP-HI Space

Based on the work of Findell and
Eltahir (JHM, 2003).

Once the CTP-HI space is classified, only CTP-HI is
needed for daily classification
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Current Remote Sensing capabilities Provide Insights for Large Scale Droughts
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Resistance

This Leads to Stable States which can provide a means for prediction
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Soil Moisture is connected to the persistence of Drought

Deducing Land-Atmosphere Coupling Regimes from SMAP Soil

Moisture

Status: a revised version of this preprint was accepted for the journal HESS and is expected to appear here in due course.

Payal Makhasana &, Joseph Santanello, Patricia Lawston-Parker, and Joshua Roundy

Status: closed
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The level of persistency and therefore prediction
varies by data set, location, and coupling regime.
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The Groundwater Stable States play a role in the L-A interactions
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There was a shift in the relationship
between CDI and GRACE between
2004-2007 (Dry) and 2007-2011 (Wet)

Cross-Correlation between GRACE and CDI
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Spatial Heterogeneity of Soil Moisture During the Evolution of droughts

2018 Drought Kansas-Missouri-
Nebraska, lowa
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Spatial Heterogeneity of Soil Moisture is Connected with Mesoscale Circulation
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Hires Soil Moisture Measurements is Needed for Understanding Extreme Events

* Heterogeneity of Soil moisture is important for understanding the evolution of extreme events
 Heterogeneity is important to untangling the feedbacks between the local and mesoscale

SMAP Soil Moisture May 1, 2018 SMAP Soil Moisture Sep 30, 2018

10



Hires Soil Moisture Measurements is Needed for Understanding Human Impacts

Lawston-Parker et al. 2023, HESS

 Even a small percentage of irrigation can cause large changes in soil moisture, fluxes, and PBLH
» Differentirrigation maps create a different spatial signature of irrigation and downstream impacts
 The spread in evaporative fraction (EF) is different across irrigated runs even though the spatial

averages are similar

* Some ‘tiles’ reach critical moisture and PBL thresholds that allow for PBL feedbacks that are not well

represented by the ‘gridcell’ average value
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Hires Soil Moisture Measurements is Needed for Forecast Models

Physical Models ML/AI Models
Getting these feedbacks correct in physical models is The future of extreme event forecasting lies in ML/AI
important for future forecasts * We need hires observations of soil moisture to
e We need hires observations of soil moisture to train and run ML/Al models.
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Summary and Conclusions

Higher resolution soil moisture measurements will
push the science of L-A coupling for:

* Extreme Event Evolution

* Human Impacts

* Forecast Models
This is due to the heterogeneity of soil moisture
and land-atmosphere feedbacks that occur at
different scales (local, meso)
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