Soil Moisture Driven Land-Atmosphere Interactions and the Connection to Drought

Joshua K. Roundy Department of Civil, Environmental, and Architectural Engineering University of Kansas

Monday October 14, 2024

Coordinated Cosmic-Ray Observation System Conference Lincoln, Nebraska

Land Atmosphere Interactions Impact on Extreme Events

While land-atmosphere coupling plays a role in these events, consistent large-scale forcing is also necessary

CTP-HI are used to classify these regimes

3

Current Remote Sensing capabilities Provide Insights for Large Scale Droughts

This Leads to Stable States which can provide a means for prediction

Soil Moisture is connected to the persistence of Drought

Status: a revised version of this preprint was accepted for the journal HESS and is expected to appear here in due course.

Deducing Land-Atmosphere Coupling Regimes from SMAP Soil Moisture

Payal Makhasana \boxtimes , Joseph Santanello, Patricia Lawston-Parker, and Joshua Roundy

Status: closed

The level of persistency and therefore prediction varies by data set, location, and coupling regime.

https://doi.org/10.5194/hess-2024-125

The Groundwater Stable States play a role in the L-A interactions

There was a shift in the relationship between CDI and GRACE between 2004-2007 (Dry) and 2007-2011 (Wet)

- Max Lag - Wet Period

Makhasana et al. (In preparation)

Spatial Heterogeneity of Soil Moisture During the Evolution of droughts

Zhang et al. (in preparation)

Spatial Heterogeneity of Soil Moisture is Connected with Mesoscale Circulation

- LC Local Feedbacks
- MCS Mesoscale Convective System
- LLJ Low Level Jet
- MCS-LLJ Both MCS and LLJ **NU-WRF** Wet Dry Stage 1 Stage 2 Stage 3 Precipitation [*mm d*⁻¹] 50% 63% 19.8 5500 18.429% 15.2 49º/0440/0 13.3 30/0 369 30% 26[°] 10.2^{10.7} 10.6 33°°° 9.7 9.0 200/0220/0 28% Volo Zolo 6.5 5.9₁0/0 200 6% 5.6 5% 5 -4.0 <mark>3.4</mark> 2.9 3.6 1.5 LLJ MCS-LLJ LC MCS LC MCS LLJ MCS-LLJ LC MCS LLJ MCS-LLJ

Zhang et al. (in preparation)

Hires Soil Moisture Measurements is Needed for Understanding Extreme Events

- Heterogeneity of Soil moisture is important for understanding the evolution of extreme events
- Heterogeneity is important to untangling the feedbacks between the local and mesoscale

10

Hires Soil Moisture Measurements is Needed for Understanding Human Impacts

Lawston-Parker et al. 2023, HESS

- Even a small percentage of irrigation can cause large changes in soil moisture, fluxes, and PBLH
- Different irrigation maps create a different spatial signature of irrigation and downstream impacts
- The spread in evaporative fraction (EF) is different across irrigated runs even though the spatial averages are similar
- Some 'tiles' reach critical moisture and PBL thresholds that allow for PBL feedbacks that are not well represented by the 'gridcell' average value
 Example for Central Washington

l0 km

ECOSTRESS LST

Example for Central Washington MODIS LST SMAP SM

~ 50 km

Hires Soil Moisture Measurements is Needed for Forecast Models

Physical Models

Getting these feedbacks correct in physical models is important for future forecasts

• We need hires observations of soil moisture to scrutinize physically based models

NOAA CPT: Coupling of Land and Atmosphere Subgrid Parameterizations (CLASP), Lead PI: Nate Chaney

ML/AI Models

The future of extreme event forecasting lies in ML/AI

 We need hires observations of soil moisture to train and run ML/AI models.

Pangu-Weather, forecast time 72 hours

rs Operational IFS, forecast time 72 hours

Temperature (K)

12

260 220

Bi et al. 2023, Nature

Summary and Conclusions

Higher resolution soil moisture measurements will push the science of L-A coupling for:

- Extreme Event Evolution
- Human Impacts
- Forecast Models

This is due to the heterogeneity of soil moisture and land-atmosphere feedbacks that occur at different scales (local, meso)

