Informing Arctic/agriculture linkages using climate model ensembles

Chris Little Food Security Implications of a Changing Arctic November 12, 2015

aer

Atmospheric and Environmental Research, Inc. Research and Development Division – Oceanography Group

Roadmap

- ① Climate model ensembles are valuable but require careful use and interpretation
 - * Sources of uncertainty in sea level projections
- 2 Across-ensemble linkages may be more robust (and more informative) than magnitude of impact
 - * Spatial correlations in regional warming near Antarctica
 - * Joint impacts of sea level/storm surge

3 Application to Arctic/Agriculture

- * Timescales of predictability
- * Opportunities for climate ensemble insights

Timescales of prediction

WMO Strategic Plan

Climate models 101

- Are physics-based, and solve conservation equations for mass, momentum, and energy within 'gridboxes'
- * Include parameterizations of hydrology, clouds, vegetation, and ocean
- * Couple fluxes between the atmosphere, ocean, land, and cryosphere
- * Sensitive to initial conditions
 - * El Nino/AO/PDO
 - * "Phase" difference

IPCC AR5 2013

Climate model ensembles

- * Many (30-40) models, differ in resolution/structure/parameterizations
- Evolving; forcing and baseline are evolving too
 - * Last round 2010-2013 (CMIP5)
 - * New CMIP6 results end 2016

Taylor et al. 2011, Meinshausen et al. 2011

Uncertainty partitioning and emergence

Model spread in internal variability

Thin lines = 11-year smoothing

Thick lines = 39-year smoothing

Difficult to distinguish "good" models

- Outliers are (usually) not common across different variables of interest
- Observational metrics do not meaningfully constrain projections
- Models are not independent

Roadmap

- 1 Climate model ensembles are valuable but require careful use and interpretation
 - * Sources of uncertainty in sea level projections
- 2 Across-ensemble linkages may be more robust (and more informative) than magnitude of impact
 - * Spatial correlations in regional warming near Antarctica
 - * Joint impacts of sea level/storm surge
- **3** Application to Arctic/Agriculture
 - * Timescales of predictability
 - * Opportunities for climate ensemble insights

The ice sheet contribution to sea level "Surface mass balance" "Dynamic" = change in = snowfall and surface ice flow across melting grounding line Snow accumulation Equilibrium line Ice sheet 10° man and 10° march 100 shelf Ablation Iceberg calving Ice flow Iceberg Ocean calving Subglacial Ocean melting **Grounding Lines** Bedrock earthobservatory.nasa.gov 11

Regional "regimes" around Antarctica

Shading = sea floor ocean temperature

Sectoral warming (2080-2100 - 1986-2005)

C. M. Little and N.M. Urban. CMIP5 temperature biases and 21st century warming around the Antarctic coast. Submitted to Annals of Glaciology.

Inter-region warming correlations (2080-2100 - 1986-2005)

Roadmap

- 1 Climate model ensembles are valuable but require careful use and interpretation
 - * Sources of uncertainty in sea level projections

2 Across-ensemble linkages may be more robust (and more informative) than magnitude of impact

- * Spatial correlations in regional warming near Antarctica
- * Joint impacts of sea level/storm surge
- **3** Application to Arctic/Agriculture
 - * Timescales of predictability
 - * Opportunities for climate ensemble insights

Coastal sea level variability 101

Joint Projections of PDI/SLR

Joint Projections of PDI/SLR

C. M. Little, R. M. Horton, R. E. Kopp, M. Oppenheimer, G.A. Vecchi and G. Villarini, (in press). Joint projections of US East Coast sea level and storm surge. Nature Climate Change.

Roadmap

- 1 Climate model ensembles are valuable but require careful use and interpretation
 - * Sources of uncertainty in sea level projections
- 2 Across-ensemble linkages may be more robust (and more informative) than magnitude of impact
 - * Spatial correlations in regional warming near Antarctica
 - * Joint impacts of sea level/storm surge

3 Application to Arctic/Agriculture

- * Timescales of predictability
- * Opportunities for climate ensemble insights

Back to the topic at hand...

* Sea ice/arctic system is subject to high internal variability

- * Intra-model correlations (either in internal variability or longer term forced response) may cast insight into linkages
 - * Between Arctic phenomena
 - * Between Arctic and midlatitudes
- * Joint impacts are omnipresent, and are important to agriculture/national security

NH sea ice extent: model-data comparison

Joint impacts

- * Long-timescale correlations are evident in some regions
 - * Across regions -- Arctic to Midlatitudes?
 - What are the timescales/physics over which T and P might be correlated
 - * What are those that have impacts (short or long-duration drought)

Sanderson et al. 2015

Summary

- * The representation of forced climate change and natural variability are model-specific
 - * Do not rely on a single model and/or realization for projections
- * The magnitude and source of uncertainty depend upon the timescale
 - * Unforced variability dominates at less than 2 decades; longer at smaller spatial scales
 - * Forced response starts to emerge at longer timescales
- The appropriate models, and the measurements that are most important for validating and improving models of the Arctic (and midlatitudes), are a function of the timescales over which impacts are assessed
 - * At some point, global influences are important → the most valuable observations may be global quantities (ocean heat uptake/expansion)
- * Correlations between impacts may be more robust than magnitude
 - * Think about possible joint impacts; rarely is there a single risk driver