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①  Climate	
  model	
  ensembles	
  are	
  valuable	
  but	
  require	
  
careful	
  use	
  and	
  interpretation	
  

*  Sources	
  of	
  uncertainty	
  in	
  sea	
  level	
  projections	
  

	
  
②  Across-­‐ensemble	
  linkages	
  may	
  be	
  more	
  robust	
  (and	
  

more	
  informative)	
  than	
  magnitude	
  of	
  impact	
  

*  Spatial	
  correlations	
  in	
  regional	
  warming	
  near	
  Antarctica	
  

*  Joint	
  impacts	
  of	
  sea	
  level/storm	
  surge	
  

③  Application	
  to	
  Arctic/Agriculture	
  

*  Timescales	
  of	
  predictability	
  

*  Opportunities	
  for	
  climate	
  ensemble	
  insights	
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Climate	
  models	
  101	
  

*  Are	
  physics-­‐based,	
  and	
  solve	
  conservation	
  
equations	
  for	
  mass,	
  momentum,	
  and	
  energy	
  
within	
  ‘gridboxes’	
  

*  Include	
  parameterizations	
  of	
  hydrology,	
  
clouds,	
  vegetation,	
  and	
  ocean	
  

	
  	
  
*  Couple	
  fluxes	
  between	
  the	
  atmosphere,	
  

ocean,	
  land,	
  and	
  cryosphere	
  

*  Sensitive	
  to	
  initial	
  conditions	
  
*  El	
  Nino/AO/PDO	
  
*  “Phase”	
  difference	
  

	
   IPCC	
  AR5	
  2013	
  



*  Many	
  (30-­‐40)	
  models,	
  differ	
  in	
  
resolution/structure/parameterizations	
  

*  Evolving;	
  forcing	
  and	
  baseline	
  are	
  
evolving	
  too	
  
*  Last	
  round	
  2010-­‐2013	
  (CMIP5)	
  
*  New	
  CMIP6	
  results	
  end	
  2016	
  

5	
  

Climate	
  model	
  ensembles	
  

of experiments, in each case the complete set of core 
simulations is expected to be completed. The intent is 
to generate a sufficiently large set of runs to enable a 
systematic model intercomparison within each type of 
experiment and thereby produce a credible multimodel 
dataset for analysis. The core experiments (located in 
the innermost circle and shaded pink in Figs. 2 and 3) 
are critical for evaluating the models, and they provide 
high-interest information about future climate change 
as well as help identify reasons for differences in the 
projections. The tier 1 integrations (surrounding the 
core and shaded yellow) examine specific aspects 
of climate model forcing, response, and processes, 
and tier 2 integrations (shaded green) go deeper into 
those aspects. Thus, proceeding from core to tier 1 to 
tier 2 can be seen as a progression from basic to more 
specialized simulations, exploring multiple aspects of 
climate system projections and responses. For each 
suite of experiments, the modeling groups will per-
form the core integrations first, followed by a selection 
of the tier 1 and tier 2 integrations, depending on their 
interests and available resources.

For detailed specifications of all the experiments, 
the reader is referred to the experiment design 

document (Taylor et al. 2009), which can be obtained 
from the CMIP5 website (http://cmip-pcmdi.llnl.gov 
/cmip5).

Long-term experiments. The core simulations within 
the suite of CMIP5 long-term experiments (Fig. 2) 
include an AMIP run, a coupled control run, and 
a “historical” run forced by observed atmospheric 
composition changes (reflecting both anthropogenic 
and natural sources) and, for the first time, including 
time-evolving land cover. The historical runs cover 
much of the industrial period (from the midnineteenth 
century to near present) and are sometimes referred to 
as “twentieth century” simulations. Within the core set 
of runs, there are also two future projection simula-
tions forced with specified concentrations [referred to 
as “representative concentration pathways” (RCPs)], 
consistent with a high emissions scenario (RCP8.5) and 
a midrange mitigation emissions scenario (RCP4.5). 
For AOGCMs and EMICs that have been coupled to 
a carbon cycle model (i.e., for ESMs), there are control 
and historical simulations, and the high emissions 
scenario (RCP8.5). For this set of ESM runs, the time-
evolving atmospheric concentration of CO2, rather 
than being specified, is calculated by the model.

The CMIP5 projections of climate change are 
driven by concentration or emission scenarios con-
sistent with the RCPs described in Moss et al. (2010). 
In contrast to the scenarios described in the IPCC 
“Special Report on Emissions Scenarios” (SRES) used 
for CMIP3, which did not include policy intervention, 

FIG. 2. Schematic summary of CMIP5 long-term experi-
ments with tier 1 and tier 2 experiments organized 
around a central core. Green font indicates simulations 
to be performed only by models with carbon cycle 
representations. Experiments in the upper hemisphere 
are suitable either for comparison with observations 
or provide projections, whereas those in the lower 
hemisphere are either idealized or diagnostic in nature 
and aim to provide better understanding of the climate 
system and model behavior.

FIG. 3. Schematic summary of CMIP5 decadal predic-
tion integrations.
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signal in the North Atlantic, it is collocated with a region
of highmodel spread. The only locations where different
emission trajectories are apparent before 2050 are the
tropical Atlantic and Indian Oceans.
The spatial pattern of emergence is somewhat con-

sistent between the ensemble and the individual models,
but the individual models show 1) a much earlier
emergence and 2) a few notable differences in spatial
patterns. CCSM4, with its relatively low internal vari-
ability, drives an earlier, and fairly uniform, emergence;
the other two models have regions of high internal
variability (Fig. 8) in the northern subtropical and sub-
polar gyres that obscure the response to different RCPs.

4. Discussion

Our results indicate that uncertainty in the oceano-
graphic component of sea level change is dominated by
AOGCM spread over much of the globe through 2100
and that the magnitude of internal variability varies
widely across AOGCMs. This discussion focuses on the
implications of these findings on projections of sea level
and the emergence of a scenario-dependent sea level
trend. We do not attempt to evaluate individual models;
rather, we suggest possible origins of model divergence,
highlight outliers, and underscore their importance to
local risk assessments.

FIG. 7. Time series of (a)–(c) GMSL and (d)–(f) NYSL rise (in cm) from four realizations of the (left) CCSM4, (middle) CSIRO
Mk3.6.0, and (right) HadGEM2-ES models. Colors indicate RCP (blue, 8.5; green, 6.0; red, 4.5; black, 2.6). (g)–(i) The NYSL variance
(in cm2) contributed by internal variability (red) and scenario uncertainty (black). Dashed vertical line indicates the crossover time.
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Figure 10 is intended to be heuristic; however, it in-
dicates that exclusion orweighting schemes based on top–
down observational metrics—for example, temperature
biases, heat uptake, and/or AMOC behavior—will have
a substantial impact on projections. Although evaluat-
ing AOGCMs is difficult (Tebaldi and Knutti 2007;
Santer et al. 2009; Sansom et al. 2013), these sea level
metrics integrate over many processes and thus may be
reliable indicators of model performance (Reichler and
Kim 2008; Tebaldi and Knutti 2007). Furthermore, be-
cause of the long response times of the deep ocean
(Church et al. 2014; Gregory et al. 2013), much of the
twenty-first-century sea level response is driven by
twentieth and early twenty-first-century forcing. The
memory ofGMSL, and its sensitivity to initial conditions
(Hallberg et al. 2013), implies that models that better
reflect sea level trends and hydrography in the observed
period will give better projections over the twenty-first
century. We also note the potential for implicit weight-
ing if all models are considered equal. Here, our en-
semble was selected using one criterion: the availability
of all four RCPs. This ensemble included several models
that originate from the same modeling center. Although
some of these AOGCMs exhibit diversity in their re-
sponse (i.e., GFDL and BCC), the two NorESMs and
MIROC-ESMs provide very similar sea level pro-
jections, suggesting that it is unreasonable to consider
these models independent.
We thus encourage efforts to evaluate and/or weight

sea level projections by their performance against ob-
servations. However, we highlight three cautionary
notes. First, there is a limited number of AOGCMs

(some of which share ocean model components);
downweighting will effectively shrink the sample size
included in assessments. Second, the central range may
be systematically biased, either because of limitations in
historical forcing (Gupta et al. 2013; Gregory et al. 2013)
or AOGCM representation of ocean heat uptake
processes (Church et al. 2014). Third, significant ef-
forts to reduce uncertainty in the oceanographic
component of LSL should take place alongside other
components of the LSL budget (e.g., freshwater ad-
ditions from ice sheet and glacier mass changes and
vertical land motion). In the future, the uncertainty
analysis techniques employed here may be adapted to
include these additional sources of sea level change,
facilitating a clear prioritization of uncertainty re-
duction efforts.

c. The importance of internal variability

Although the attribution of an anthropogenic signal in
global mean sea level is clear (Marcos andAmores 2014;
Church et al. 2014), our results suggest that the influence
of different radiative forcing trajectories on sea level is
obscured (especially at the local level) in the twenty-first
century by 1) long oceanic response times, 2) highmodel
uncertainty in regions of large sea level change, and 3)
varying model representations of internal variability.
Furthermore, our results emphasize that the time of
emergence will vary greatly depending on a model’s
climate forcing, response to climate forcing, and repre-
sentation of internal variability.
To characterize internal variability, we have used

a subset of models with a limited number of realizations,

FIG. 10. Time series ofmodel–scenariomean (a)GMSLand (b) NYSL rise forRCP 8.5 (in cm). Each line is a single
AOGCM; light shading indicates the ensemble range; darker shading encompasses the central 10 models at each
time.

15 JANUARY 2015 L I T TLE ET AL . 849

Figure 10 is intended to be heuristic; however, it in-
dicates that exclusion orweighting schemes based on top–
down observational metrics—for example, temperature
biases, heat uptake, and/or AMOC behavior—will have
a substantial impact on projections. Although evaluat-
ing AOGCMs is difficult (Tebaldi and Knutti 2007;
Santer et al. 2009; Sansom et al. 2013), these sea level
metrics integrate over many processes and thus may be
reliable indicators of model performance (Reichler and
Kim 2008; Tebaldi and Knutti 2007). Furthermore, be-
cause of the long response times of the deep ocean
(Church et al. 2014; Gregory et al. 2013), much of the
twenty-first-century sea level response is driven by
twentieth and early twenty-first-century forcing. The
memory ofGMSL, and its sensitivity to initial conditions
(Hallberg et al. 2013), implies that models that better
reflect sea level trends and hydrography in the observed
period will give better projections over the twenty-first
century. We also note the potential for implicit weight-
ing if all models are considered equal. Here, our en-
semble was selected using one criterion: the availability
of all four RCPs. This ensemble included several models
that originate from the same modeling center. Although
some of these AOGCMs exhibit diversity in their re-
sponse (i.e., GFDL and BCC), the two NorESMs and
MIROC-ESMs provide very similar sea level pro-
jections, suggesting that it is unreasonable to consider
these models independent.
We thus encourage efforts to evaluate and/or weight

sea level projections by their performance against ob-
servations. However, we highlight three cautionary
notes. First, there is a limited number of AOGCMs

(some of which share ocean model components);
downweighting will effectively shrink the sample size
included in assessments. Second, the central range may
be systematically biased, either because of limitations in
historical forcing (Gupta et al. 2013; Gregory et al. 2013)
or AOGCM representation of ocean heat uptake
processes (Church et al. 2014). Third, significant ef-
forts to reduce uncertainty in the oceanographic
component of LSL should take place alongside other
components of the LSL budget (e.g., freshwater ad-
ditions from ice sheet and glacier mass changes and
vertical land motion). In the future, the uncertainty
analysis techniques employed here may be adapted to
include these additional sources of sea level change,
facilitating a clear prioritization of uncertainty re-
duction efforts.

c. The importance of internal variability

Although the attribution of an anthropogenic signal in
global mean sea level is clear (Marcos andAmores 2014;
Church et al. 2014), our results suggest that the influence
of different radiative forcing trajectories on sea level is
obscured (especially at the local level) in the twenty-first
century by 1) long oceanic response times, 2) highmodel
uncertainty in regions of large sea level change, and 3)
varying model representations of internal variability.
Furthermore, our results emphasize that the time of
emergence will vary greatly depending on a model’s
climate forcing, response to climate forcing, and repre-
sentation of internal variability.
To characterize internal variability, we have used

a subset of models with a limited number of realizations,

FIG. 10. Time series ofmodel–scenariomean (a)GMSLand (b) NYSL rise forRCP 8.5 (in cm). Each line is a single
AOGCM; light shading indicates the ensemble range; darker shading encompasses the central 10 models at each
time.

15 JANUARY 2015 L I T TLE ET AL . 849

16	
  CMIP5	
  models,	
  
RCP	
  8.5	
  

NYC	
  sea	
  level	
  rise	
  

NCAR	
  CCSM4	
  
NYC	
  sea	
  level	
  

rise	
  
(cm)	
  

“internal	
  
variability”	
  

scenario	
  
uncertainty	
  

Model	
  
	
  uncertainty	
  



the sea level at NYC (NYSL) in the remainder of the
paper because 1) it is a marker for the hotspot at
a coastal location and 2) New York City has significant
exposure of coastal assets (Hallegatte et al. 2013;
NPCC2 2013).

b. Partitioning uncertainty

We decompose the sources of uncertainty in these
ensemble projections in Fig. 3, which illustrates their
temporal evolution, and Fig. 4, which shows global snap-
shots of the main effects (S, M, and V) in 2040 and 2090.
The evolution of uncertainty in GMSL (Figs. 3a,c) is

qualitatively consistent with projections of global mean
surface air temperature (Yip et al. 2011; Hawkins and
Sutton 2009). Model uncertainty is the largest source of
uncertainty through most of the twenty-first century,
increasing monotonically through the period. However,
the rate of increase in scenario uncertainty is higher
throughout the twenty-first century, and this quantity
increases to 65% of the variance by 2090. Uncertainty
driven by internal variability is comparable to that of
scenario uncertainty before 2035 (the crossover time)

but decreases to a negligible component of the total
uncertainty by the late twenty-first century.
As expected, uncertainty is higher for all sources at

a local level (Figs. 3b,d; Hawkins and Sutton 2009).
Although the absolute uncertainty arising from internal
variability is relatively constant throughout the century
in NYSL, its fractional contribution is initially much
higher than in GMSL (up to;50%, compared to,30%
globally) and takes longer to decay. Both model and
scenario uncertainty are higher in NYSL than in GMSL,
but model uncertainty is dominant throughout the
twenty-first century, remaining greater than 65% through
2090. Model–scenario interaction grows over time, in-
dicating that models have a different response to in-
dividual RCPs, but this term remains small compared to
the main effects.
At almost all locations, sea level change remains

scenario independent in 2040 (Fig. 4a). By 2090, the
response to RCPs is apparent and is particularly strong
in the Northern Hemisphere subpolar gyres, the Arctic,
and in a band north of the Antarctic Circumpolar Cur-
rent (ACC; Fig. 4b); these are locations where heat is

FIG. 3. The uncertainty in decadal mean (a) GMSL and (b) NYSL contributed by each component of the total
variance [black, scenario, S(t); blue, model,M(t); red, internal,V(t); green, model scenario, I(t)]. (c),(d) The fraction
of the variance in SLR at each location driven by each component. Dashed vertical line indicates the crossover time.
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*  Outliers	
  are	
  (usually)	
  
not	
  common	
  across	
  
different	
  variables	
  of	
  
interest	
  

	
  
*  Observational	
  metrics	
  

do	
  not	
  meaningfully	
  
constrain	
  projections	
  

*  Models	
  are	
  not	
  
independent	
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Difficult	
  to	
  distinguish	
  “good”	
  models	
  

(GFDL, CCSM/CESM, MIROC, etc.) tend to be closer
to each other than they are to other models in the en-
semble.Models from different institutions with common
components (such as CCSM4 and NorESM1) are cor-
rectly identified as near-neighbors in the ensemble. The
intermodel distances are found to be relatively robust to
changes in EOF truncation length and to changes in the

diagnostic fields used [see section 3e(1)], and very sim-
ilar to those found by Knutti et al. (2013), in which the
supplementary material discusses the intermodel re-
lationships at greater length.
This similarity information is clearly relevant to the

issue of some models in the CMIP ensembles being
overrepresented, and one could potentially use it to

FIG. 2. A graphical representation of the intermodel distance matrix for CMIP3, CMIP5, the multimodel mean, and a set of observed
values. Each row and column represents a single climate model (or observation). Each box represents a pairwise combination, where
warm colors indicate a greater distance. Distances are measured as a fraction of the meanmodel bias in the combined CMIP3 and CMIP5
ensembles.
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signals and separation of surface and basal processes, and show in
detail the relationship between thinning of ice shelves and grounded
tributary glaciers. These improvements allow us to identify the major
cause of grounded Antarctic ice-sheet mass loss.

The distribution of Antarctic ice-shelf thinning (DT/Dt) is strongly
regional (Fig. 2), being most rapid (up to 6.8 m yr21) along the
Amundsen and Bellingshausen Sea coasts. The relatively thick Land,
DeVicq, Getz, Dotson, Crosson, Thwaites, Pine Island, Cosgrove and
Venable ice shelves thinned during 2003–2008, in marked contrast to
the adjacent, thinner Abbott, Nickerson and Sulzberger ice shelves
where there was no significant thinning (Fig. 3) (Supplementary Fig. 1,
Supplementary Table 1). Firn modelling on the ice shelves (Sup-
plementary Fig. 2) indicates that the firn layer actually thickened
throughout this region, mostly through increased accumulation, con-
sistent with ICESat measurements on nearby slow-moving grounded ice
(Fig. 3). These neighbouring ice shelves with similar atmospheric forcing
but contrasting elevation change signals must therefore be subject to
some regional forcing other than local climate. Furthermore, all of the
thinning ice shelves maintained their frontal positions or advanced
(Supplementary Fig. 3) while simultaneously receiving increased influx
from their tributary glaciers2. Hence, this regional thinning is not
explained by negative surface mass balance, firn compaction, retreating
ice-shelf fronts or by reduced glacier influx. We deduce that it is caused
by increased basal melt driven by ocean interaction.

Our analysis reveals that there is also evidence of net thinning
through enhanced basal melt on the East Antarctic ice shelves
Vigridisen, 17E, West, Shackleton, Holmes Glacier, Dibble, Rennick
Glacier and the thicker part of Totten. The Nivlisen, Moscow
University and 152E ice-shelf surfaces appear to have lowered as a
result of firn processes (Fig. 2, Supplementary Figs 4–6, Supplemen-
tary Table 1). On the western Antarctic Peninsula, the Stange Ice Shelf
and the thicker sections of the George VI Ice Shelf also lowered at a rate
greater than the modelled firn-lowering signal in this region, indi-
cating ocean-driven basal melt (Fig. 4, Supplementary Fig. 7).
However, the thinning of the retreating Wilkins Ice Shelf during
2003–2008 may combine components of basal melt, surface processes
and dynamics (Supplementary Discussion).

An exception to this pattern is the Larsen C ice shelf, where firn
processes are an important part of the elevation change signal.
Measured Dh/Dt on the ice shelf increases northwards from 20.06 m
yr21 to 20.21 m yr21, with similar values on adjacent, slow-flowing
grounded ice (20.20 m yr21 in the south to 20.35 m yr21 in the north,
on grounded ice at an average 230 m above the ice-shelf altitude; Fig. 4
inset). Our firn modelling independently predicts lowering due to
surface processes of 20.10 m yr21 (south) to 20.16 m yr21 (north)
for the same period (Fig. 4, Supplementary Table 1). This south–north
gradient is echoed in the mapped firn-air content (lesser northwards)15

and melt days (greater northward), and a temporal trend of 10.5 melt
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Figure 2 | Antarctic ice-shelf ice-thickness change rate DT/Dt, 2003–2008.
Seaward of the ice shelves, estimated average sea-floor potential temperatures
(in uC) from the World Ocean Circulation Experiment Southern Ocean Atlas
(pink to blue) are overlaid on continental-shelf bathymetry (in metres)30

(greyscale, landward of the continental-shelf break, CSB). Grey labels indicate
Antarctic Peninsula (AP), West and East Antarctic Ice Sheets (WAIS and
EAIS), Bellingshausen Sea (BS), Amundsen Sea (AS) and the Ross and Ronne
ice shelves. White labels indicate the ice shelves (clockwise from top) Vigridisen
(V), Nivlisen (N), 17 East (17E), Borchgrevinkisen (B), 23 East (23E), 26 East

(26E), Unnamed (U), Amery (A), Publications (P), West (W), Shackleton (SH),
Conger (C), Totten (T), Moscow University (MU), Holmes (H), Dibble (DB),
Mertz (M), Ninnis (NI), 152 East (152E), Cook (CO), Rennick (RE),
Borchgrevink-Mariner (BM), Aviator (AV), Nansen (N), Drygalski (D),
Filchner (F), Brunt (BR), Stancombe-Wills (S), Riiser-Larsen (R), Quar (Q),
Ekstrom (E), Jelbart (J) and Fimble (FI). Grey circles show relative ice losses for
ice-sheet drainage basins (outlined in grey) that lost mass between 1992 and
2006 (after ref. 2) (Supplementary Table 1).
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Figure 2 | CMIP5 ensemble spread in PDI and SLR. Individual AOGCM projections (2080–2099 mean � 1986–2005 mean) of PDI (y-axis) and mean SLR
across the five sites (x-axis) for RCP 2.6 (a) and RCP 8.5 (b). AOGCMs, indicated by numbers, are overlaid on a kernel density estimate of the bivariate
probability distribution; shading indicates the normalized probability from 0.9 (darkest) to 0 (white). Red numbers in b are AOGCMs from group 1; blue
numbers are group 2 AOGCMs; black numbers show all other AOGCMs (group 3). Dashed lines indicate ensemble mean values.

In this paper,

Q.5

Q.6

we investigate: changes in PDI and oceanographic1

SLR (from here forward, denoted as SLR) at five US East and Gulf2

coast locations (Fig. 1b) across a 15-member AOGCM ensemble;3

and the joint influence of these two factors on coastal flood risk.4

Changes in PDI are estimated with the statistical formulation5

of Villarini and Vecchi33,Q.7 based on sea surface warming in the6

tropical Atlantic relative to the tropical mean (‘relative SST’; see7

blue boxes in Fig. 1a for the regions considered). Although this8

proxy measurement does not capture all large-scale controls on9

TCs (refs 1,23,24,34,35) or feedbacks between TCs, ocean heat10

content and SLR (refs 36,37), it has been shown to provide11

skilful hindcasts and forecasts of North Atlantic TC activity and12

intensity33,38,39. Furthermore, this proxy allows the incorporation13

of a large ensemble of climate models, which is critical given14

the spread in TC-relevant large-scale climate variables shown in15

other studies1,2,7,25–27.16

Sea-level/power dissipation index linkages 17

First, we present the ensemble spread in PDI anomaly and site- 18

averaged SLR over the 2080–2099 period (Fig. 2). In RCP 2.6, which 19

requires drastic emission reductions over the twenty-first century, 20

the 15-member ensemble mean projections are 0.21m SLR (five- 21

site average) and 1.1 ⇥ 1011 m3 s�2 PDI anomaly (representing an 22

absolute PDI > 75% higher than the 1986–2005 mean). Even under 23

relatively weak forcing, these values exceed the mean rate of SLR 24

and the range of 20-year-mean PDI experienced in the twentieth 25

century29,40. Most ensemble members are relatively tightly clustered 26

around these values. However, the GFDL-CM3, MIROC-ESM and 27

MIROC-ESM-CHEM project high SLR and PDI relative to the 28

ensemble mean. 29

In RCP 8.5, the five-site average SLR and PDI anomaly of 0.38m 30

and 2.8 ⇥ 1011 m3 s�2 are substantially higher than the RCP 2.6 31

simulations. Two GFDL-ESMs (no. 8 and no. 11) emerge from the 32
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Figure 2 | CMIP5 ensemble spread in PDI and SLR. Individual AOGCM projections (2080–2099 mean � 1986–2005 mean) of PDI (y-axis) and mean SLR
across the five sites (x-axis) for RCP 2.6 (a) and RCP 8.5 (b). AOGCMs, indicated by numbers, are overlaid on a kernel density estimate of the bivariate
probability distribution; shading indicates the normalized probability from 0.9 (darkest) to 0 (white). Red numbers in b are AOGCMs from group 1; blue
numbers are group 2 AOGCMs; black numbers show all other AOGCMs (group 3). Dashed lines indicate ensemble mean values.

In this paper,
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we investigate: changes in PDI and oceanographic1

SLR (from here forward, denoted as SLR) at five US East and Gulf2

coast locations (Fig. 1b) across a 15-member AOGCM ensemble;3

and the joint influence of these two factors on coastal flood risk.4

Changes in PDI are estimated with the statistical formulation5

of Villarini and Vecchi33,Q.7 based on sea surface warming in the6

tropical Atlantic relative to the tropical mean (‘relative SST’; see7

blue boxes in Fig. 1a for the regions considered). Although this8

proxy measurement does not capture all large-scale controls on9

TCs (refs 1,23,24,34,35) or feedbacks between TCs, ocean heat10

content and SLR (refs 36,37), it has been shown to provide11

skilful hindcasts and forecasts of North Atlantic TC activity and12

intensity33,38,39. Furthermore, this proxy allows the incorporation13

of a large ensemble of climate models, which is critical given14

the spread in TC-relevant large-scale climate variables shown in15

other studies1,2,7,25–27.16

Sea-level/power dissipation index linkages 17

First, we present the ensemble spread in PDI anomaly and site- 18

averaged SLR over the 2080–2099 period (Fig. 2). In RCP 2.6, which 19

requires drastic emission reductions over the twenty-first century, 20

the 15-member ensemble mean projections are 0.21m SLR (five- 21

site average) and 1.1 ⇥ 1011 m3 s�2 PDI anomaly (representing an 22

absolute PDI > 75% higher than the 1986–2005 mean). Even under 23

relatively weak forcing, these values exceed the mean rate of SLR 24

and the range of 20-year-mean PDI experienced in the twentieth 25

century29,40. Most ensemble members are relatively tightly clustered 26

around these values. However, the GFDL-CM3, MIROC-ESM and 27

MIROC-ESM-CHEM project high SLR and PDI relative to the 28

ensemble mean. 29

In RCP 8.5, the five-site average SLR and PDI anomaly of 0.38m 30

and 2.8 ⇥ 1011 m3 s�2 are substantially higher than the RCP 2.6 31

simulations. Two GFDL-ESMs (no. 8 and no. 11) emerge from the 32
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In this analysis, we do not attempt to mechanistically link PDI1

and SLR across the entire ensemble. However, because the three2

AOGCMs that project the largest increases in North Atlantic SLR,3

PDI and upper ocean temperatures are also outliers in global mean4

quantities, it is plausible that the PDI/SLR correlation shown by5

the three warmest models may persist outside the North Atlantic.6

Furthermore, the propensity of the GFDL and MIROC AOGCMs7

towards high North Atlantic PDI and a high Northeast US sea-8

level anomaly may indicate a regional dynamic linkage, driven by9

a weakening AMOC.More e�orts to clarify causal mechanisms—in10

both models and observations, in the North Atlantic and in other11

ocean basins (for example, the Northwest Pacific)—are required to12

clarify the timescales and radiative forcing scenarios over which13

these correlations apply.14

Quantifying changes in the future coastal flood hazard15

Capturing the joint influence of PDI and SLR on the coastal16

flood hazard requires a technique that can account for changes in17

flooding driven by both factors. To accomplish this, we follow a18

peak-over-threshold approach3 in which annually integrated hourly19

exceedances of a threshold (the 99.5th percentile of summer values)20

across five US East and Gulf coast locations (Fig. 1b) are used to21

develop a flood index (FI). The historical relationship between FI22

and PDI are used together with SLR projections at each of the23

five sites5 to translate CMIP5 AOGCM PDI anomalies29 to end-24

of-century FI (see Methods, Supplementary Tables 1 and 2, and25

Supplementary Figs 2–6). The FI is an aggregate measure of the26

duration and exceedance of high water during the TC season,27

normalized so that each site contributes equally. A value of 10028

implies that the annually integrated flood height over a threshold29

is 100 times greater than the 1986–2005 annual mean.30

To examine the relative importance of PDI and SLR, and the31

influence of the intra-AOGCM PDI/SLR correlation, we employ32

Monte-Carlo sampling to examine FI changes for: SLR only (dashed33

lines in Fig. 4); PDI and SLR selected at random from the ensemble34

(‘random model’ case; thin solid lines); and PDI and SLR selected35

as pairs (‘same model’ case; thick solid lines), from each of36

15 models.37

Figure 4 indicates that uncertainty in the future FI is dominated38

by changes in century-timescale PDI and SLR projections, rather39

than uncertainty in the PDI/FI regression. The FI, and the di�erence40

between RCPs, increases greatly by the end of the century, driven41

by the wide spread and skew in the CMIP5 model results. The42

median 2080–2099 FI is approximately 16 for RCP 2.6 and 10043

for RCP 8.5 (for the ‘same model’ case), with a 90th percentile44

projection of 75 and 350. Most of the change in the FI is driven45

by SLR (generally greater than 70% depending on the quantile46

considered), with PDI-induced changes in FI fractionally larger in47

RCP 8.5 and further into the upper tail. The role of the clustered48

outliers in Fig. 2 is clearly seen in the secondary peaks at higher FI49

in Fig. 4. High-end projections for both RCPs (that is, those above50

the 80th percentile) are determined by these outliers. Furthermore,51

because these models have high PDI and SLR, the ‘same model’52

case results in a ⇠20% increase in FI relative to the ‘random53

model’ case and a ⇠25–30% increase relative to the FI if only SLR54

is included.55

The FI changes in Fig. 4 do not include several other factors56

that influence flood risk (for example, extratropical storms47, the57

interaction of tides and SLR (ref. 4), precipitation48,49 and exposure58

to flooding9–11). In particular, SLR arising from other climate-59

and non-climate-related processes that are not incorporated in60

AOGCMs (ref. 15) will further increase FI; a complete risk61

assessment would include these processes in a probabilistic62

manner5,22. A sensitivity analysis indicates that a 31 cm SLR63

contribution from non-oceanographic SLR sources (the median64

RCP 8.5 projection at Charleston, SC in Kopp et al.5; see Methods65
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Figure 4 | Eastern US flood index projections. a,b, Probability (a) and
cumulative distribution functions (b) for the 1986–2005 (black) and
2080–2099 flood index (FI) subject to RCP 2.6 (blue) and RCP 8.5 (red).
For the 2080–2099 period, dotted lines show the FI if PDI is unchanged;
thin solid lines show the FI distribution if PDI and SLR are drawn randomly
from one of the 15 models; thick solid lines show the distribution if PDI and
SLR are selected from the same model. The insets expand the x-axis in the
range 0 < FI < 30. Grey lines in b indicate the median and 90th percentile
of the distribution.

and Supplementary Fig. 7) increases the median FI by a factor 66

of four, whereas the 90th percentile projection is approximately 67

doubled. A complete probabilistic treatment of FI, however, requires 68

an understanding of linkages to these other terms. Although some 69

sources are likely to be independent (for example, glacial isostatic 70

adjustment), others (for example, land ice mass changes) will be 71

coupled to ocean–atmosphere processes. 72

Assessing the flood index 73

In Fig. 4, we use a multi-location flood index50,51 as opposed 74

to local hazard curves2. For this analysis, the FI provides a 75

more robust description of historical surge–climate relationships 76

and the incorporation of a larger AOGCM ensemble—which is 77

critical to uncertainty characterization. However, an index does not 78

distinguish between flood events of varying severity and conflates 79

flooding caused by TCs and SLR.Hazard curves provide a local view 80

of the complete spectrum of flood severity that is not possible with 81
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①  Climate	
  model	
  ensembles	
  are	
  valuable	
  but	
  require	
  
careful	
  use	
  and	
  interpretation	
  

*  Sources	
  of	
  uncertainty	
  in	
  sea	
  level	
  projections	
  

	
  
②  Across-­‐ensemble	
  linkages	
  may	
  be	
  more	
  robust	
  (and	
  

more	
  informative)	
  than	
  magnitude	
  of	
  impact	
  

*  Spatial	
  correlations	
  in	
  regional	
  warming	
  near	
  Antarctica	
  

*  Joint	
  impacts	
  of	
  sea	
  level/storm	
  surge	
  

③  Application	
  to	
  Arctic/Agriculture	
  

*  Timescales	
  of	
  predictability	
  

*  Opportunities	
  for	
  climate	
  ensemble	
  insights	
  

	
  

	
  

Roadmap	
  

19	
  



*  Sea	
  ice/arctic	
  system	
  is	
  subject	
  to	
  high	
  internal	
  variability	
  

*  Intra-­‐model	
  correlations	
  (either	
  in	
  internal	
  variability	
  or	
  
longer	
  term	
  forced	
  response)	
  may	
  cast	
  insight	
  into	
  linkages	
  	
  
*  Between	
  Arctic	
  phenomena	
  

*  Between	
  Arctic	
  and	
  midlatitudes	
  

*  Joint	
  impacts	
  are	
  omnipresent,	
  and	
  are	
  important	
  to	
  
agriculture/national	
  security	
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Back	
  to	
  the	
  topic	
  at	
  hand…	
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opinion & comment

COMMENTARY:

Influence of internal variability 
on Arctic sea-ice trends
Neil C. Swart, John C. Fyfe, Ed Hawkins, Jennifer E. Kay and Alexandra Jahn

Internal climate variability can mask or enhance human-induced sea-ice loss on timescales ranging 
from years to decades. It must be properly accounted for when considering observations, understanding 
projections and evaluating models.

A broad range of evidence shows 
with high confidence that human-
induced climate warming has driven 

a decline in Arctic sea-ice extent over the 
past few decades1. However, the rate of sea-
ice decline has not been uniform. Arctic 
sea-ice extent was lost at a considerably 
higher rate from 2001–2007 than in the 
preceding decades (Fig. 1), which caught 
the attention of scientists and the public 
alike2. In contrast, from 2007–2013 there 
was a near-zero trend in observed Arctic 
September sea-ice extent, in large part 
due to a strong uptick of the ice-pack in 
2013, which has continued into 2014. By 
deliberately cherry-picking these periods 
we will demonstrate how using short-term 
trends can be misleading about longer-term 

changes, when such trends show either 
rapid or slow ice loss.

The possibility that internal climate 
variability can produce decade-long periods 
in the twenty-first century featuring 
enhanced3 or negligible4 sea-ice loss is well 
documented in the scientific literature3–5. 
Broadly communicating this role of internal 
climate variability on sea-ice trends to 
society at large is key, as in the case of 
temperature and precipitation changes6–8. 
Yet the lack of a significant sea-ice trend 
since 2007 is causing some in the media 
to question the scientific understanding of 
climate change9, amplifying the scepticism 
which has garnered support due to the 
recent slowdown in global-mean surface 
temperature rise10.

By others it is held that the periods 
of observed dramatic ice loss show that 
climate models are too conservative and 
significantly underestimate the observed 
sea-ice trends11. Proponents of this view 
often use extrapolation of historical trends 
to predict summer ice-free conditions in the 
Arctic as early as 2015, and much sooner 
than anticipated by the process-based 
models11.12. Just how likely were the recently 
observed sea-ice trends? Do climate models 
underestimate the historical trend, and what 
are the implications for the future?

Likelihood of recent observed trends
How likely is a 7-year period of near-zero 
trend in September Arctic sea-ice extent, 
as observed between 2007 and 2013? To 
answer this question we examine trends in 
Arctic sea-ice extent for all 7-year periods 
between 1979 and 2013 in the observations 
and in 102 realizations from 31 Coupled 
Model Intercomparison Phase 5 (CMIP5) 
global climate models (see Supplementary 
Information). If there was no long-term 
background trend in sea-ice extent we would 
expect random variability to lead to positive 
7-year trends about 50% of the time (or 
with a probability p = 0.50). Alternatively, 
if internal variability was small compared 
to the background trend we would expect 
7-year positive trends to be rare. In the 
model simulations of the past 35 years a 
7-year period where a September extent 
trend was greater than or equal to zero 
occurs with a probability of p = 0.34 on 
average across the models (Fig. 2a). Thus, 
according to the models there is about 
a one in three chance of a 7-year period 
with a positive sea-ice trend, despite strong 
anthropogenic forcing.

For comparison, the enhanced rate 
of sea-ice loss observed from 2001–2007 
occurs with a probability p = 0.05 on 
average in the model simulations. This result 
suggests that such a period of enhanced 

Se
p.

 e
xt

en
t (

m
ill

io
n 

km
2 )

2

1

–1

–2

–3

–4

0

Year

1980 1990 2000 2010 2020

CMIP5

Observations

Figure 1 | Arctic September sea-ice extent anomalies. Sea-ice extent anomaly relative to 1980–2000 from 
observations (red) and 102 realizations from 31 CMIP5 models (grey), along with the CMIP5 ensemble 
mean (black). Linear trends are fitted to the observations over 2001–2007 (green) and 2007–2013 
(blue). The CMIP5 ensemble mean is calculated such that each model has a weight of 1. Observations 
extend to 2014.
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*  Long-­‐timescale	
  correlations	
  are	
  
evident	
  in	
  some	
  regions	
  
*  Across	
  regions	
  -­‐-­‐	
  Arctic	
  to	
  

Midlatitudes?	
  
*  What	
  are	
  the	
  timescales/physics	
  

over	
  which	
  T	
  and	
  P	
  might	
  be	
  
correlated	
  
*  What	
  are	
  those	
  that	
  have	
  impacts	
  

(short	
  or	
  long-­‐duration	
  drought)	
  

22	
  

Joint	
  impacts	
  

FIG. 6. Regional projections of annual mean temperature and precipitation changes for RCP8.5 (years 2070–2100) and recent clima-
tology (years 1970–2000). For CMIP5 simulations, direct output from the RCP8.5 simulation is used. For CMIP3 simulations, changes are
taken from the A1B simulation and scaled by the ratio of forcing in RCP8.5 to A1B. Each point represents a single climate model
projection for the respective region (as defined in Fig. 3). The curve on each axis represents the univariate likelihood distribution for
temperature and precipitation change independently, whereas the shaded contours indicate joint likelihood derived from
a Gaussian prior.
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FIG. 6. Regional projections of annual mean temperature and precipitation changes for RCP8.5 (years 2070–2100) and recent clima-
tology (years 1970–2000). For CMIP5 simulations, direct output from the RCP8.5 simulation is used. For CMIP3 simulations, changes are
taken from the A1B simulation and scaled by the ratio of forcing in RCP8.5 to A1B. Each point represents a single climate model
projection for the respective region (as defined in Fig. 3). The curve on each axis represents the univariate likelihood distribution for
temperature and precipitation change independently, whereas the shaded contours indicate joint likelihood derived from
a Gaussian prior.
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Summary	
  

*  The	
  representation	
  of	
  forced	
  climate	
  change	
  and	
  natural	
  variability	
  are	
  model-­‐specific	
  
*  Do	
  not	
  rely	
  on	
  a	
  single	
  model	
  and/or	
  realization	
  for	
  projections	
  

*  The	
  magnitude	
  and	
  source	
  of	
  uncertainty	
  depend	
  upon	
  the	
  timescale	
  
*  Unforced	
  variability	
  dominates	
  at	
  less	
  than	
  2	
  decades;	
  longer	
  at	
  smaller	
  spatial	
  

scales	
  
*  Forced	
  response	
  starts	
  to	
  emerge	
  at	
  longer	
  timescales	
  

	
  
*  The	
  appropriate	
  models,	
  and	
  the	
  measurements	
  that	
  are	
  most	
  important	
  for	
  

validating	
  and	
  improving	
  models	
  of	
  the	
  Arctic	
  (and	
  midlatitudes),	
  are	
  a	
  function	
  of	
  
the	
  timescales	
  over	
  which	
  impacts	
  are	
  assessed	
  
*  At	
  some	
  point,	
  global	
  influences	
  are	
  important	
  à	
  the	
  most	
  valuable	
  observations	
  

may	
  be	
  global	
  quantities	
  (ocean	
  heat	
  uptake/expansion)	
  

*  Correlations	
  between	
  impacts	
  may	
  be	
  more	
  robust	
  than	
  magnitude	
  	
  
*  Think	
  about	
  possible	
  joint	
  impacts;	
  rarely	
  is	
  there	
  a	
  single	
  risk	
  driver	
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