Putting soil moisture on the NWCC Interactive Map: Instructive for the NSMN effort?

Jordan Clayton

Hydrologist, USDA, NRCS, NWCC & Snow Survey Program jordan.clayton@ut.usda.gov

2018 MOISST Workshop: From Soil Moisture Observations to Actionable Decisions. Lincoln, NE

- administrative structure & coordination
- merging in situ network data with remotely-sensed values
 - research ongoing... (e.g. Steven Quiring & Trent Ford's efforts)
- diverse user groups → different data needs
 - drought assessment/mitigation
 - streamflow and reservoir storage forecasting
 - watershed modeling
 - research (basin hydrology, precipitation feedbacks, global climate, soil physical dynamics, etc.
 - crop production, irrigation
 - fire hazard
 - flooding & erosion assessment/mitigation
 - engineering/structural applications (foundation leakage, road conditions, etc.)
 - soil ecosystems
 - ground-truthing satellite or model estimates
- identify key deliverables & timeline for each
- · develop standards for data quality, sensor installations and maintenance
- determine template for presentation/delivery of data
 - example: NWCC Interactive Map..
 - (not advocating for this template, just offering it as an example of decision-making process

- administrative structure & coordination
- merging in situ network data with remotely-sensed values
 - research ongoing... (e.g. Steven Quiring & Trent Ford's efforts)
- diverse user groups → different data needs
 - drought assessment/mitigation
 - streamflow and reservoir storage forecasting
 - watershed modeling
 - research (basin hydrology, precipitation feedbacks, global climate, soil physical dynamics, etc.
 - crop production, irrigation
 - fire hazard
 - flooding & erosion assessment/mitigation
 - engineering/structural applications (foundation leakage, road conditions, etc.)
 - soil ecosystems
 - ground-truthing satellite or model estimates
- identify key deliverables & timeline for each
- · develop standards for data quality, sensor installations and maintenance
- determine template for presentation/delivery of data
 - example: NWCC Interactive Map.
 - (not advocating for this template, just offering it as an example of decision-making process

- administrative structure & coordination
- merging in situ network data with remotely-sensed values
 - research ongoing... (e.g. Steven Quiring & Trent Ford's efforts)
- diverse user groups → different data needs
 - drought assessment/mitigation
 - · streamflow and reservoir storage forecasting
 - · watershed modeling
 - research (basin hydrology, precipitation feedbacks, global climate, soil physical dynamics, etc.)
 - crop production, irrigation
 - · fire hazard
 - · flooding & erosion assessment/mitigation
 - engineering/structural applications (foundation leakage, road conditions, etc.)
 - soil ecosystems
 - ground-truthing satellite or model estimates
- identify key deliverables & timeline for each
- develop standards for data quality, sensor installations and maintenance
- determine template for presentation/delivery of data
 - example: NWCC Interactive Map.
 - (not advocating for this template, just offering it as an example of decision-making process

- administrative structure & coordination
- merging in situ network data with remotely-sensed values
 - research ongoing... (e.g. Steven Quiring & Trent Ford's efforts)
- diverse user groups → different data needs
 - drought assessment/mitigation
 - · streamflow and reservoir storage forecasting
 - · watershed modeling
 - research (basin hydrology, precipitation feedbacks, global climate, soil physical dynamics, etc.)
 - crop production, irrigation
 - · fire hazard
 - · flooding & erosion assessment/mitigation
 - engineering/structural applications (foundation leakage, road conditions, etc.)
 - soil ecosystems
 - ground-truthing satellite or model estimates
- · identify key deliverables & timeline for each
- develop standards for data quality, sensor installations and maintenance
- determine template for presentation/delivery of data
 - example: NWCC Interactive Map.
 - (not advocating for this template, just offering it as an example of decision-making process

- administrative structure & coordination
- merging in situ network data with remotely-sensed values
 - research ongoing... (e.g. Steven Quiring & Trent Ford's efforts)
- diverse user groups → different data needs
 - drought assessment/mitigation
 - · streamflow and reservoir storage forecasting
 - · watershed modeling
 - research (basin hydrology, precipitation feedbacks, global climate, soil physical dynamics, etc.)
 - crop production, irrigation
 - · fire hazard
 - · flooding & erosion assessment/mitigation
 - engineering/structural applications (foundation leakage, road conditions, etc.)
 - soil ecosystems
 - ground-truthing satellite or model estimates
- · identify key deliverables & timeline for each
- develop standards for data quality, sensor installations and maintenance
- determine template for presentation/delivery of data
 - example: NWCC Interactive Map.
 - (not advocating for this template, just offering it as an example of decision-making process

- administrative structure & coordination
- merging in situ network data with remotely-sensed values
 - research ongoing... (e.g. Steven Quiring & Trent Ford's efforts)
- diverse user groups → different data needs
 - drought assessment/mitigation
 - · streamflow and reservoir storage forecasting
 - · watershed modeling
 - research (basin hydrology, precipitation feedbacks, global climate, soil physical dynamics, etc.)
 - crop production, irrigation
 - · fire hazard
 - · flooding & erosion assessment/mitigation
 - engineering/structural applications (foundation leakage, road conditions, etc.)
 - soil ecosystems
 - ground-truthing satellite or model estimates
- · identify key deliverables & timeline for each
- · develop standards for data quality, sensor installations and maintenance
- · determine template for presentation/delivery of data
 - example: NWCC Interactive Map...
 - (not advocating for this template, just offering it as an example of decision-making process)

- administrative structure & coordination
- merging in situ network data with remotely-sensed values
 - research ongoing... (e.g. Steven Quiring & Trent Ford's efforts)
- diverse user groups → different data needs
 - drought assessment/mitigation
 - streamflow and reservoir storage forecasting
 - · watershed modeling
 - research (basin hydrology, precipitation feedbacks, global climate, soil physical dynamics, etc.)

THIS PRESENTATION

- crop production, irrigation
- · fire hazard
- · flooding & erosion assessment/mitigation
- engineering/structural applications (foundation leakage, road conditions, etc.)
- soil ecosystems
- ground-truthing satellite or model estimates
- · identify key deliverables & timeline for each
- develop standards for data quality, sensor installations and maintenance
- determine template for presentation/delivery of data
 - example: NWCC Interactive Map...
 - (not advocating for this template, just offering it as an example of decision-making process)

- Questions
 - which depth to use?
 - 2", 8", 20" sensors available at nearly all SNOTEL & SCAN sites
 - depth-integrated? If so, how calculated/weighted? Same weighting for all sites?
 - which frequency?
 - hourly SM values available and quality-controlled at majority of sites
 - Interactive map uses daily (midnight) values
 - which parameters are most useful?
 - current volumetric water content (VWC)?
 - % normal (or) departure from normal?
 - % saturation?
 - how long a period-of-record (POR) until data are included?
 - POR for most SNOTEL/SCAN sites: ~ 5 15 years

- Questions
 - which depth to use?
 - 2", 8", 20" sensors available at nearly all SNOTEL & SCAN sites
 - depth-integrated? If so, how calculated/weighted? Same weighting for all sites?
 - which frequency?
 - hourly SM values available and quality-controlled at majority of sites
 - Interactive map uses daily (midnight) values
 - which parameters are most useful?
 - current volumetric water content (VWC)?
 - % normal (or) departure from normal?
 - % saturation?
 - how long a period-of-record (POR) until data are included?
 - POR for most SNOTEL/SCAN sites: ~ 5 15 years

- Compromises
 - SM values need to be contextualized
 - · e.g. Tyson & Ronald's talks
 - daily (midnight) max values from POR used as proxy for % saturation (still in production)
 - hourly values = better as daily values may miss SM peaks (in future)
 - data processing limitations to analysis
 - pull from main database, try not to require additional 'flat file' values
 - soils lab data not available for many sites
 - use period-of-record data for saturation values
 - no clear solution for depth-integration
 - user can select any available depth
 - depth-integrated value can be added late
 - no clear solution for regionalizing data
 - basin % normal and % saturation are averages of values from sites in each basin
 - short POR requires the incorporation of recently-installed sensors
 - 5 year minimum used
 - uses data that have not yet been quality-controlled
 - effort ongoing for all SNOTEL & SCAN hourly SM/ST data
 - uses daily (midnight) values instead of hourly data
 - data structure already established for daily, not hourly, parameters in Interactive Map
 - SNOTEL data may not be representative of regional SM conditions
 - site locations chosen for measurement of mountain snowpacks (north-facing, protected)
 - not as problematic for SCAN

- Compromises
 - SM values need to be contextualized
 - · e.g. Tyson & Ronald's talks
 - daily (midnight) max values from POR used as proxy for % saturation (still in production)
 - hourly values = better as daily values may miss SM peaks (in future)
 - data processing limitations to analysis
 - pull from main database, try not to require additional 'flat file' values
 - soils lab data not available for many sites
 - use period-of-record data for saturation values
 - no clear solution for depth-integration
 - user can select any available depth
 - depth-integrated value can be added later
 - no clear solution for regionalizing data
 - basin % normal and % saturation are averages of values from sites in each basin
 - short POR requires the incorporation of recently-installed sensors
 - 5 year minimum used
 - uses data that have not yet been quality-controlled
 - effort ongoing for all SNOTEL & SCAN hourly SM/ST data
 - uses daily (midnight) values instead of hourly data
 - data structure already established for daily, not hourly, parameters in Interactive Map
 - SNOTEL data may not be representative of regional SM conditions
 - site locations chosen for measurement of mountain snowpacks (north-facing, protected)
 - not as problematic for SCAN

- Compromises
 - SM values need to be contextualized
 - · e.g. Tyson & Ronald's talks
 - daily (midnight) max values from POR used as proxy for % saturation (still in production)
 - hourly values = better as daily values may miss SM peaks (in future)
 - data processing limitations to analysis
 - pull from main database, try not to require additional 'flat file' values
 - soils lab data not available for many sites
 - use period-of-record data for saturation values
 - no clear solution for depth-integration
 - user can select any available depth
 - depth-integrated value can be added late
 - no clear solution for regionalizing data
 - · basin % normal and % saturation are averages of values from sites in each basin
 - short POR requires the incorporation of recently-installed sensors
 - 5 year minimum used
 - uses data that have not yet been quality-controlled
 - effort ongoing for all SNOTEL & SCAN hourly SM/ST data
 - uses daily (midnight) values instead of hourly data
 - data structure already established for daily, not hourly, parameters in Interactive Map
 - SNOTEL data may not be representative of regional SM conditions
 - site locations chosen for measurement of mountain snowpacks (north-facing, protected)
 - not as problematic for SCAN

- Compromises
 - SM values need to be contextualized
 - · e.g. Tyson & Ronald's talks
 - daily (midnight) max values from POR used as proxy for % saturation (still in production)
 - hourly values = better as daily values may miss SM peaks (in future)
 - data processing limitations to analysis
 - pull from main database, try not to require additional 'flat file' values
 - soils lab data not available for many sites
 - use period-of-record data for saturation values
 - no clear solution for depth-integration
 - · user can select any available depth
 - depth-integrated value can be added later
 - no clear solution for regionalizing data
 - basin % normal and % saturation are averages of values from sites in each basin
 - short POR requires the incorporation of recently-installed sensors
 - 5 year minimum used
 - uses data that have not yet been quality-controlled
 - effort ongoing for all SNOTEL & SCAN hourly SM/ST data
 - uses daily (midnight) values instead of hourly data
 - data structure already established for daily, not hourly, parameters in Interactive Map
 - SNOTEL data may not be representative of regional SM conditions
 - site locations chosen for measurement of mountain snowpacks (north-facing, protected)
 - not as problematic for SCAN

- Compromises
 - SM values need to be contextualized
 - · e.g. Tyson & Ronald's talks
 - daily (midnight) max values from POR used as proxy for % saturation (still in production)
 - hourly values = better as daily values may miss SM peaks (in future)
 - data processing limitations to analysis
 - pull from main database, try not to require additional 'flat file' values
 - soils lab data not available for many sites
 - use period-of-record data for saturation values
 - no clear solution for depth-integration
 - · user can select any available depth
 - depth-integrated value can be added later
 - no clear solution for regionalizing data
 - basin % normal and % saturation are averages of values from sites in each basin
 - short POR requires the incorporation of recently-installed sensors
 - 5 year minimum used
 - uses data that have not yet been quality-controlled
 - effort ongoing for all SNOTEL & SCAN hourly SM/ST data
 - uses daily (midnight) values instead of hourly data
 - data structure already established for daily, not hourly, parameters in Interactive Map
 - SNOTEL data may not be representative of regional SM conditions
 - site locations chosen for measurement of mountain snowpacks (north-facing, protected)
 - not as problematic for SCAN

- Compromises
 - SM values need to be contextualized
 - · e.g. Tyson & Ronald's talks
 - daily (midnight) max values from POR used as proxy for % saturation (still in production)
 - hourly values = better as daily values may miss SM peaks (in future)
 - data processing limitations to analysis
 - pull from main database, try not to require additional 'flat file' values
 - soils lab data not available for many sites
 - use period-of-record data for saturation values
 - no clear solution for depth-integration
 - · user can select any available depth
 - depth-integrated value can be added later
 - no clear solution for regionalizing data
 - basin % normal and % saturation are averages of values from sites in each basin
 - short POR requires the incorporation of recently-installed sensors
 - 5 year minimum used
 - uses data that have not yet been quality-controlled
 - effort ongoing for all SNOTEL & SCAN hourly SM/ST data
 - uses daily (midnight) values instead of hourly data
 - data structure already established for daily, not hourly, parameters in Interactive Map
 - SNOTEL data may not be representative of regional SM conditions
 - site locations chosen for measurement of mountain snowpacks (north-facing, protected)
 - not as problematic for SCAN

- Compromises
 - SM values need to be contextualized
 - · e.g. Tyson & Ronald's talks
 - daily (midnight) max values from POR used as proxy for % saturation (still in production)
 - hourly values = better as daily values may miss SM peaks (in future)
 - data processing limitations to analysis
 - pull from main database, try not to require additional 'flat file' values
 - soils lab data not available for many sites
 - use period-of-record data for saturation values
 - no clear solution for depth-integration
 - · user can select any available depth
 - depth-integrated value can be added later
 - no clear solution for regionalizing data
 - basin % normal and % saturation are averages of values from sites in each basin
 - short POR requires the incorporation of recently-installed sensors
 - 5 year minimum used
 - uses data that have not yet been quality-controlled
 - effort ongoing for all SNOTEL & SCAN hourly SM/ST data
 - uses daily (midnight) values instead of hourly data
 - data structure already established for daily, not hourly, parameters in Interactive Map
 - SNOTEL data may not be representative of regional SM conditions
 - site locations chosen for measurement of mountain snowpacks (north-facing, protected)
 - not as problematic for SCAN

- Compromises
 - SM values need to be contextualized
 - · e.g. Tyson & Ronald's talks
 - daily (midnight) max values from POR used as proxy for % saturation (still in production)
 - hourly values = better as daily values may miss SM peaks (in future)
 - data processing limitations to analysis
 - pull from main database, try not to require additional 'flat file' values
 - soils lab data not available for many sites
 - use period-of-record data for saturation values
 - no clear solution for depth-integration
 - · user can select any available depth
 - depth-integrated value can be added later
 - no clear solution for regionalizing data
 - basin % normal and % saturation are averages of values from sites in each basin
 - short POR requires the incorporation of recently-installed sensors
 - 5 year minimum used
 - uses data that have not yet been quality-controlled
 - effort ongoing for all SNOTEL & SCAN hourly SM/ST data
 - uses daily (midnight) values instead of hourly data
 - data structure already established for daily, not hourly, parameters in Interactive Map
 - SNOTEL data may not be representative of regional SM conditions
 - site locations chosen for measurement of mountain snowpacks (north-facing, protected)
 - not as problematic for SCAN

- Compromises
 - SM values need to be contextualized
 - · e.g. Tyson & Ronald's talks
 - daily (midnight) max values from POR used as proxy for % saturation (still in production)
 - hourly values = better as daily values may miss SM peaks (in future)
 - data processing limitations to analysis
 - pull from main database, try not to require additional 'flat file' values
 - soils lab data not available for many sites
 - use period-of-record data for saturation values
 - no clear solution for depth-integration
 - · user can select any available depth
 - depth-integrated value can be added later
 - no clear solution for regionalizing data
 - basin % normal and % saturation are averages of values from sites in each basin
 - short POR requires the incorporation of recently-installed sensors
 - 5 year minimum used
 - uses data that have not yet been quality-controlled
 - effort ongoing for all SNOTEL & SCAN hourly SM/ST data
 - uses daily (midnight) values instead of hourly data
 - data structure already established for daily, not hourly, parameters in Interactive Map
 - SNOTEL data may not be representative of regional SM conditions
 - site locations chosen for measurement of mountain snowpacks (north-facing, protected)
 - not as problematic for SCAN

Background

- Interactive Map uses daily data from multiple networks
- can select variety of parameters, statistics, time intervals, etc.

Background

- Interactive Map uses daily data from multiple networks
- can select variety of parameters, statistics, time intervals, etc.

Background

- Interactive Map uses daily data from multiple networks
- can select variety of parameters, statistics, time intervals, etc.

EXAMPLES

Surficial soil moisture

- VWC at 2" (5 cm) depth
- SNOTEL & SCAN networks
- Stevens HydraProbe sensors

Can discern regional trends but hard to contextualize...

POR average

- from daily (midnight) values
- POR data qualitycontrolled for each site (ongoing)
- POR range: 5 to ~20 years (minimum of 5 to be used on map)

- for a given date & depth
- can specify different depths

Percent normal for basins

- 6-digit HUCs
- = avg of sites in basin
- minimum for including basins on map
 - 3 sites
 - % normal values available for those sites for at least 5 years

Soil moisture at depth

- 20" (50 cm) sensor
- lower variability
- more representative of longer-term conditions (drought, excessive SM, etc.)
 - e.g. Trent's results

- lower variability than surficial sensors
- accords well with other site data (e.g. longer term precipitation trends)

■ 20" sensor

- 20" sensor
- same as previous, but for Sept. 1 instead of May 1
- better reflection of growing season conditions

- 20" sensor
- May 1 data
- can generalize to large watersheds (2-digit HUCs)
- NWCC can also generate custom watersheds (e.g. combination of 6-digit HUCs of interest)

Departure from normal

- 20" sensor
- can identify anomalies

Length of POR

most sites between 5-15 years

Other depths

- 8" (20 cm) sensor
- rooting zone
- ~integrative of highly variable surficial soils (2" data) and long term trends in SM (20" data)

Timing of peak soil moisture

 may be helpful in identifying early snowmelt, etc.

Need to be able to contextualize by % saturation

- Saturation ~ 40% VWC for some soils, but much lower for many
- % normal values may show ~average conditions, but does not actually provide information on how wet/dry the soils are...
 - e.g. Sept. 1 SM values (next slides)
- Saturation values determined from POR data, not lab results
 - best determined manually per site, but need automatable process
 - use POR max from hourly (not daily) dataset
 - need to use hourly because may miss large events in daily (midnight) data
 - still in development...

Need to be able to contextualize by % saturation

- Saturation ~ 40% VWC for some soils, but much lower for many
- % normal values may show ~average conditions, but does not actually provide information on how wet/dry the soils are...
 - e.g. Sept. 1 SM values (next slides)
- Saturation values determined from POR data, not lab results
 - best determined manually per site, but need automatable process
 - use POR max from hourly (not daily) dataset
 - need to use hourly because may miss large events in daily (midnight) data
 - still in development...

Need to be able to contextualize by % saturation

- Saturation ~ 40% VWC for some soils, but much lower for many
- % normal values may show ~average conditions, but does not actually provide information on how wet/dry the soils are...
 - e.g. Sept. 1 SM values (next slides)
- Saturation values determined from POR data, not lab results
 - best determined manually per site, but need automatable process
 - use POR max from *hourly* (not daily) dataset
 - need to use hourly because may miss large events in daily (midnight) data
 - still in development...

Percent normal for Sept. 1

- 2" sensor
- lots of variability due to topo, site conditions, local storms, ET, etc.
- no information regarding degree of dryness for that particular soil horizon at that date
- need % saturation values

VWC for Sept. 1

same, for SM values instead of % normal

Maximum VWC for that day

- 2" sensor
- from daily data
- still in development...
 - max values from hourly POR to be used in final version
 - % saturation not yet available
 - % saturation = (current VWC / max VWC)

Application to NSMN

Pros

- users can select soil depth most relevant to their application
 - 2" may be most beneficial for merging with remotely-sensed data
 - 20" may be most useful for drought monitoring
 - (better example = Chen Zhao's poster...)
- regionalizes point data to basins
 - % normal only
- diverse functionality & output
 - % normal
 - % saturation (forthcoming)
 - other... (soil moisture deficit?)
- can ingest outside networks
- · data framework already developed

Application to NSMN

Cons

- only includes SNOTEL & SCAN networks for in situ data, no remotelysensed data
- no depth-integrated SM value (yet)
- no clear best-practice approach to regionalizing values
 - for eastern states, etc.
 - · from remotely-sensed data
 - SNOTEL sites may not be representative
- too complicated / too many options?

Challenges for the NSMN effort: Revisited

- administrative structure & coordination
- merging in situ network data with remotely-sensed values
- diverse user groups → different data needs
- identify key deliverables & timeline for each
- develop standards for data quality, sensor installations and maintenance
- determine template for presentation/delivery of data...
 - is this a desirable approach (build outward from in situ data)?
 - merit in delivering product with flexible output (e.g. different sensor depths)?
 - context = key (% normal, % saturation, departure from normal, etc.)

Questions & Discussion

Jordan Clayton

Hydrologist, USDA, Natural Resources Conservation Service
jordan.clayton@ut.usda.gov

385-285-3118

Textbox

**

**

Changes in % normal over time

- 30 day interval (customizable)
- 20" depth

Soil moisture percentiles

- 20" sensor
- provides historical context

Other depths

- 4" sensor
- similar to 2"
- available in SCAN, not SNOTEL

Other depths

- 40" sensor
- available in SCAN, not SNOTEL

