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A B S T R A C T   

Study region: 61 catchments located in Hungary, with drainage areas from 8.74 to 810 km2. 
Study focus: Many engineering tasks require the estimation of the catchment response time (Tr). 
The most frequently used Tr parameters are the time of concentration and the lag time. At 
ungauged catchments, they are usually estimated by empirical equations that relate Tr to 
catchment characteristics. This paper provides a comparative study of three dimension-reduction 
techniques and seven clustering methods for fitting empirical equations to the observed values of 
Tr. 60 catchment descriptors were calculated for each catchment, then three subsets with 1–3 
descriptors were extracted from the entire parameter set during the dimension-reduction analysis. 
Two and four catchment groups were created during a cluster analysis, by re-calibrating the three 
equations that resulted from the dimension-reduction analysis. 
New hydrological insights for the region under study: It is demonstrated that the principal component 
analysis can be easily outperformed by the linear correlation and the all-possible-regressions 
methods, the latter yielding a root-mean-squared error (RMSE) of 6.77 h when applied with 
three catchment descriptors. The most interesting finding of the dimension reduction is that Tr is 
strongly connected to field capacity in the region of study. The performance of the clustering 
methods varies considerably (RMSE = 5.05–12.03 h). The best overall performance comes from 
the residual approach (RMSE = 8.14 h on average). It is shown that several of the methods 
outperform the grouping based on geographical regions, however, the estimation error is reduced 
only in a few cases when compared to the regional estimation (i.e., one cluster) method. Clusters 
created based on catchment width yields the best results, resulting in RMSE values of 5.80 and 
5.77 h (with two and four clusters, respectively). The comparison of the new and the existing 
empirical equations clearly demonstrated that the estimation of Tr needs improvement in 
Hungary, while the application of more than two clusters is unwarranted for the study region.   
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1. Introduction 

Estimating the response time of a catchment is a crucial step of many engineering tasks. Different time parameters need to be 
estimated for different purposes, such as peak flow estimation, modeling, or flood-risk/environmental hazard mapping. The most 
frequently used time parameters are the time of concentration (Tc), the lag time (TL), the time to peak (Tp), and the time to equilibrium 
(Te) (McCuen et al., 1987). The theoretical background of these time parameters is tangled, and their calculation is still an elaborate 
task, even though their study dates back more than 150 years. Recently, Beven (2020) highlighted the differences between Tc and Te 
and how they became systematically mistreated in the last century. Moreover, several definitions are used for the calculation of time 
parameters in the literature, creating further confusion around their calculation. The present work aims to provide a broader picture of 
the catchment response time (Tr) in general. 

Studies focusing on time parameter estimation involve three main assessment methods that rely on i) measured data; ii) hydraulic 
equations, and; iii) empirical or semi-empirical formulae. Measurements can be carried out using i) laboratory models; ii) a tracer 
substance, or; iii) registering rainfall and runoff data. Although tracer measurements provide detailed information on the runoff 
generation process and form the only approach that can be considered as a direct measurement of Tr, it can be completed only for 
research and not for an operational purpose (Pilgrim, 1976). The employment of model catchments built in a laboratory suffers from 
the same limitations. The ensuing results obtained by either of such measurements are not necessarily valid for natural catchments 
(Gaál et al., 2012). 

The main disadvantage of applying measured time-series of rainfall and runoff is the lack of a clear definition for time parameters. 
However, for catchments larger than the experimental catchment size (i.e., a few square kilometers), it is the most effective way to 
collect information about the ‘true’ value of Tr since a large number of events on numerous catchments can be processed using his
torical precipitation and streamflow data. Recently, Giani et al. (2021) provided a new method to estimate the average value of the 
catchment response time using measured rainfall and runoff data. The authors of this paper used this method to calculate Tr on the 
event scale. These recent developments made the estimation of Tr from measured time-series more straightforward and 
comprehensive. 

The observed value of Tr can be assessed by catchment descriptors to set up empirical equations. The performance of the equations 
can be bolstered in two steps: i) selecting catchment descriptors which describe the response variable (Tr) most efficiently, and; ii) 
through the grouping of catchments. The result of catchment grouping highly depends on the selection of descriptors. Therefore, 
identification of the proper catchment descriptors is a crucial step. There is a vast amount of parameters available in the literature. 
Ssegane et al. (2012) collected 72 topographic parameters, 66 climatic parameters, 98 soil parameters, and 15 land use/land cover 
parameters, while Sanborn and Bledsoe (2006) gathered 84 streamflow metrics from literature. Even if the set of examined parameters 
is reduced by hydrological reasoning at the very beginning, application of a dimension-reduction technique is typically required to set 
up a smaller parameter space. 

The two most often used dimension-reduction techniques in hydrological studies are stepwise regression analysis (SRA) and 
principal component analysis (PCA). A notable difference between the two methods is that while SRA utilizes information from the 
response variable as it minimizes the prediction error, PCA would not necessarily involve the response variable (Ssegane et al., 2012). 
While PCA is helpful to reduce dimensions and group parameters, it may lead to the removal of hydrologically significant parameters. 
For example, Myronidis and Ivanova (2020) applied PCA to reduce the parameter space followed by employing SRA to estimate design 
flow values. As it turned out, it is not guaranteed that PCA would retain the most efficient parameter set in terms of design-flow 
estimation. Singh et al. (2009) also relied on PCA to group parameters and set up a reduced parameter set. They state that one 
parameter from each principal component (PC) can subsequently estimate specific hydrological processes. Even though this set of 
parameters indeed retains the largest information content from the initial parameter space regarding the variance, it is not guaranteed 
that the selected parameters will lead to the best estimation of the chosen hydrological process. Ssegane et al. (2012) compared SRA, 
PCA, and five other causal selection methods on parameter selection of known functional relationships. In their study, PCA was 
outperformed by SRA, and two of the causal selection methods performed the best. 

Catchment grouping is a fundamental tool to transfer information from gauged catchments to ungauged sites. It can provide a 
deeper understanding of the underlying processes that control the studied runoff characteristics. Groups can be categorized based on 
their i) construction (fixed or targeted to the catchment of interest), and; ii) spatial continuity (contiguous or non-contiguous) (Blöschl 
et al., 2013). The applications of grouping methods may include the estimation of i) annual runoff; ii) seasonal runoff/flow regime; iii) 
flow duration curve; iv) low flow/design flow values, and; v) model parameters. Comprehensive studies usually focus on one appli
cation; however, different clustering techniques can easily lead to different results. Laaha and Blöschl (2006) found that employing 
seasonality regions based on low-flow exceedance yields the best result in the case of low-flow estimation. For flow duration curve 
estimation in France, the visual grouping method and the regression tree (RT) method performed equally well (Sauquet and Catalogne, 
2011). Parajka et al. (2005) estimated the model parameters of a semi-distributed conceptual rainfall-runoff model the most suc
cessfully via a kriging approach and a donor catchment method based on similarity. 

To the present authors’ best knowledge, there is no literature available on grouping methods to estimate Tr. Ravazzani et al. (2019) 
examined the effect of catchment grouping on the performance of 24 empirical equations. However, their clustering approach was 
based on the result of flow duration curve estimation (Boscarello et al., 2016). They found that the predictions did not improve 
significantly when homogeneous groups of catchments were created. 

The broad spectrum of such findings underlines the need for a comprehensive study of clustering methods concerning the esti
mation of Tr. An added motivation of the present study is that the currently employed equation for the estimation of Tc in Hungary 
dates back to 1958 (Wisnovszky, 1958), thus clearly requiring a revision. This paper focuses on two main aspects: i) to find the optimal 
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dimension-reduction method, and; ii) to identify the best catchment-grouping approach, along with the optimal number of groups. We 
also focus on quantifying the PCA’s effectiveness as a parameter selection technique (and conclude that it does not necessarily yield the 
best set of parameters), and on assessing the improvement via comparison to existing empirical equations. A further novelty of the 
present study is that we provide the clustering methods’ efficiency in terms of probability by a Monte-Carlo approach. 

2. Study area and data 

This study involves 61 small- to medium-sized catchments located in the Carpathian Basin. An overview of the catchments’ location 
is provided in Fig. 1, while Table 1 lists some important characteristics. The size of the catchments ranges from 8.74 to 810 km2, while 
the average catchment area is 206 km2. 6.5% of the catchments are larger than 500 km2, and 54% of the catchments have an area 
smaller than 150 km2. The proportion of forested area ranges from 3.83% to 88.7%, while the impervious area is between 0.275% and 
19.9%, based on the Copernicus land-use/land cover products (Copernicus, 2020a, 2020b). The soil types covering the catchments are 
dominantly deposits, such as glacial and alluvial, loess and loess-like, tertiary, and older deposits. Third of the catchments coincide 
with karst regions, while volcanic rocks, such as andesite, rhyolite, and basalt are dominant in a few (<5%) ones. Sandstone, shale, and 
phyllite are dominantly present in even fewer catchments. The study covers the years from 2000 to 2017 when the annual rainfall and 
runoff ranged between 394 and 1377 and 21.1–642 mm, respectively. The region’s climate is predominantly warm-summer humid 
continental (Dfb), based on the Köppen climate classification (Peel et al., 2007), while the aridity index (i.e., the annual potential 
evaporation divided by the annual precipitation) varies between 0.75 and 1.25. 

Catchment delineation was performed by the Copernicus Land Monitoring Services’ EU-DEM v1.1 digital surface model. This is a 
freely available dataset with a spatial resolution of 25 m in raster format (Copernicus, 2016). Three main selection criteria were 
applied regarding the selection of the discharge time-series, namely i) no significant human influence on flow; ii) high temporal 
resolution of measurements, and; iii) record availability for at least ten years (similar to Sauquet and Catalogne, 2011). The local Water 
Directorates provided high-resolution (5 min) discharge and precipitation time-series for 61 and 17 stations, respectively. Since not 
every catchment has a nearby rainfall gauging station, the European Centre of Medium-Range Weather Forecast (ECMWF) reanalysis 
data from the Copernicus Climate Data Store were used in addition to the gauging station data. The used product is the Era5 Land 
dataset (Copernicus, 2019), with an hourly temporal and a 0.1◦ x 0.1◦ (~7.5 km x 11 km) spatial resolution. The applicability of the 
ECMWF reanalysis data to response time calculation was examined separately in a previous study (Nagy and Szilágyi, 2020). In the 
referred study, eight different graphical Tr definitions were compared at the 38 catchments having both gauging station and ECMWF 
precipitation data. We found that the ECMWF data is adequate for Tr estimation, especially when the centers of masses and peaks of the 
measured runoff and rainfall time-series are used. 

3. Methodology 

3.1. Overview 

The methodology of the study is comprised of three main steps: i) assembling the initial data which included calculation of the 
observed Tr values and evaluation of the catchment descriptors (CDs); ii) reduction of the initial CD dataset into different number of 
CDs by various dimension-reduction methods, and; iii) grouping catchments into different number of groups by selected clustering 
methods. The first step resulted in one characteristic, i.e., the observed value of Tr for 61 watersheds each, accompanied by 60 CDs for 
each catchment. The second step yielded the optimal subsets of CDs by applying three dimension-reduction methods. Lastly, the most 
efficient combination of the number of groups and clustering method was identified through cluster analysis. The general form of the 

Fig. 1. Overview of the study area and catchments.  
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Table 1 
Minimum, maximum, and average values of the important catchment descriptors.   

Catchment area 
[km2] 

Longest 
flowpath [km] 

Elevation [m 
a.s.l.] 

Average slope of 
watershed [%] 

Highest stream order 
(Strahler) [-] 

Ratio of impervious 
surfaces [%] 

Ratio of 
forests [%] 

Annual 
runoff [mm] 

Annual 
precipitation [mm] 

Aridity 
index [-] 

Minimum  8.74  5.08  103  1.05  2  0.275  3.83  21.1  394  0.75 
Maximum  810  88.3  1629  22.2  5  19.9  88.7  642  1377  1.25 
Average  206  32.9  264  9.69  4  8.89  69.4  74.6  756  1.10  
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fitted empirical equations throughout the study is given as 

Tr,mod = α1∙Xα2
1 ∙Xα3

2 ∙⋯∙Xαn+1
n (1)  

where X1, …, Xn are the selected CDs, α1, …, αn+1 are model coefficients, while the number of selected parameters (n) can be 1 through 
3. The overview of the workflow and the applied methods are summarized in Fig. 2. 

3.2. Derivation of Tr from observations 

The characteristic, measured values of Tr were calculated for each catchment applying the detrending moving-average cross- 
correlation analysis (DMCA) following Giani et al. (2021). The strength of the DMCA method is that it can find the timescale at which 
two time-series are linked even when they exhibit different frequency spectra and are nonlinearly related (Giani et al., 2021). 
Therefore, the DMCA method is capable to estimate Tr using the measured precipitation and discharge time-series. This method can 
determine Tr values for every event, resulting in a set of Tr values for each catchment. For the 61 examined catchments, 11,646 
event-based values were collected altogether. The number of events (i.e., Tr values) per catchment ranged from 25 to 625 with a 
median of 117. 

In what follows, the median of the DMCA-based set of values is considered as the characteristic, observed value of Tr for each 
catchment, hence, the empirical equations later were fitted using these values. In Fig. 3, we present the distribution of the observed Tr 
values by means of boxplots, representing the medians, the 25th and 75th percentiles, and the outliers, along with a map of the 
observed median values. 

From Fig. 3 it is clear that the value of Tr exhibits significant variability, especially for larger catchments. This can be attributed to 
the fact that the distribution of rainfall becomes less uniform as the catchment area increases. The authors would prefer to consider Tr 
as a stochastic value, since its value is exposed to randomness, e.g., the distribution of precipitation over a catchment. However, in this 

Fig. 2. Workflow of the study.  
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study we only aim to estimate the median of the measured set of Tr values. This median can be interpreted as the Tr of a “typical flood”. 

3.3. Catchment descriptors 

Since the aim is to connect the observed value of Tr to CDs, altogether, 60 parameters were collected and classified into five main 
categories: i) size and relief; ii) topography; iii) channel network; iv) shape indices, and; v) hydro-climatological indices. The list of 
parameters and their definitions can be found in Appendix A1-A5, including name, abbreviation, and measurement unit, along with a 
reference. A selection of CDs is presented in Fig. 4. 

3.4. Dimension-reduction 

The initial number of CDs had to be reduced to a smaller parameter set which could subsequently be used to construct and fit 
empirical equations to the observed values of Tr. First, the method of all possible regressions (APR) were evaluated, which means the 
evaluation of all possible parameter combinations by Eq. (1) (see above in Section 3.1). The number of combinations grows from 60 to 
1830 and 35990, as the number of CDs increases from one to two and three, respectively. This method’s output should agree with the 
result of SRA in moderately well-behaved problems (Hocking, 1976), although Gugel (1972) reported 37% improvement in the results 
when APR was compared to SRA. The efficiency of other dimension-reduction methods can be assessed in probability terms since APR 
yields the probability distribution function of the performance index. As a second dimension-reduction technique, PCA was employed, 
and one parameter with the highest load on the first three PCs was kept. The third method was simple but arbitrary to a certain degree. 
The parameter sets were obtained from the linear correlation matrix (LCM) between the response variable (Tr) and the entire CD set. 
Parameters expressing the highest correlation with Tr but producing a weak correlation (Pearson correlation coefficient, r < 0.7) 
among each other were selected. According to previous studies on empirical Tr estimation equations (Azizian, 2018; Fang et al., 2008; 

Fig. 3. a) Observed values of Tr [hr] resulting from the DMCA-based event selection method. Red crosses denote the characteristic Tr values for each 
catchment as the median of the observed set of values. b) Spatial distribution of the observed, characteristic values of Tr. 

Fig. 4. Maps of different CDs: a) slope of the longest flow path (S [%]); b) basin shape factor (Sb [-]); c) field capacity at the soil surface (fc0 [%]); d) 
drainage texture (T [1/km]); e) mean annual runoff (MAR [mm]); f) forested area (Af [%]). 
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Grimaldi et al., 2012; Nagy et al., 2016; Ravazzani et al., 2019), most equations include one to three parameters. Additionally, the 
selection of four or more CDs would have increased the computation time of the APR method significantly, since the number of possible 
CD combinations grows an order of magnitude with each additional CD. Therefore, with the help of these dimension-reduction 
methods (APR, PCA, and LCM), one to three parameters were selected out of the 60 CDs. 

3.5. Catchment grouping 

Altogether, seven clustering methods were compared: regional estimation (RE), geographic clustering (GC), k-means clustering 
(KM), hierarchical clustering (HC), regression tree (RT) method, residual approach (RA), and Monte-Carlo (MC) approach. RE means 
no clustering (or one cluster); its inclusion is meant to show the efficiency of applying different numbers of clusters. In the following, 
the array of estimated Tr values comprises the dependent or response variable, while the independent variables are the selected CDs 
using the three dimension-reduction methods (APR, PCA, and LCM). The above clustering methods are widely used; here, we only 
present a short description of each method. 

GC is based on the regions defined in the most recent design estimation manual, published by the General Directorate of Water 
Management (General Directorate of Water Management, 2001). The manual differentiates six regions as ‘well distinguishable runoff 
regions in Hungary’, but it gives no further explanation on the creation of such units. It is therefore assumed that the regions were 
created with the help of geological and hydrological (i.e. catchment) boundaries, referred to as geographical units. The six regions 
presented in the manual were later merged into four and two separate groups. The groups were created with consideration to the 
geological and climatological properties of the Carpathian Basin. The original and the merged groups are presented in Fig. 5. 

KM was performed by Lloyd’s algorithm (Lloyd, 1982) which does not include the response variable and consists of the following 
steps: i) choosing the initial cluster centers (or centroids) randomly from the data points; ii) computing point-to-cluster-centroid 
distances of all residual points to each centroid based on the chosen distance metric; iii) assigning each point to the cluster with 
the closest centroid; iv) computing the average of the points in each cluster to obtain new centroid locations; v) repeating steps ii)-iv) 
until cluster assignments stop changing; vi) repeating i)-v) until the number of replicates is reached. The number of replicates defines 
the number of repetitions of the clustering procedure starting from the random selection of initial cluster centers. This method 
minimizes the total variance of clusters, which is the sum of the deviation of each data point from its cluster’s center by the chosen 
distance metric. The latter meant the sample correlation between the data points (treated as sequences of values) when subtracted from 
unity. Each centroid is the component-wise mean of the points in that cluster, after centering and normalizing those points to zero 
mean and unity standard deviation. The algorithm has two parameters: the maximum number of iterations and the number of rep
licates which were set to 10,000 and 100 respectively, in order to ensure a global optimum. The main disadvantage of this method is 
that the number of clusters must be defined before applying the algorithm. More detailed information on KM is given by Everitt et al. 
(2011) in Chapters 5.4.1–5.4.3. 

HC, in contrast, does not require the number of clusters defined since it builds a dendrogram based on data point distances (Everitt 
et al., 2011). The dataset can be split at the desired level into clusters using the dendrogram. The correlation method was chosen again 
as the distance metric. This algorithm maximizes the distances between the clusters. Its advantage is the visualization of the clusters 
since outliers can be easily spotted on the dendrogram. 

The RT method creates a decision tree with the desired number of nodes and bins (Breiman et al., 1984). The bins represent the 
clusters ensuring their maximum homogeneity. This method’s advantage is that it needs no parametrization and is sensitive to outliers 
(Laaha and Blöschl, 2006). However, it results in one discrete value of the response variable for each cluster. 

The RA involves applying the RT method using the residuals (Tr,res) of the response variable’s regional estimation. Hence, the 
residual becomes the response variable, and one CD is used as the independent variable to define the clusters (bins). The residual is 
simply calculated as Tr,res = Tr,mod – Tr,obs, where Tr,mod is the modeled while Tr,obs is the observed value of Tr. Every CD was tested as the 
independent variable. On average, drainage texture (T [1/km]) performed the best; therefore, it was used for every set of CDs and 
every number of groups. 

The MC approach aims to find the optimal set of clusters by testing a high number (100,000) of sets. First, the number of catchments 
in each cluster was defined randomly. The minimum number of catchments was set to n + 2, were n is the number of CDs involved in 
the empirical equation (see Section 3.1) to ensure the stability of the fitted regression. The maximum number of catchments were set to 
61 – (k – 1) ∙ (n + 2), where k is the number of clusters. This way, the minimum number of catchments can be selected for each cluster. 
Second, the required number of catchments were selected, also on a random basis. This approach yields the cumulative distribution 

Fig. 5. Geographical grouping by the General Directorate of Water Management (left), with a subsequent merger into four and two separate groups 
(middle and right) in this study. 
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function (CDF) of the performance indices. Therefore, the performance of the other clustering methods can be assessed in terms of 
probability. Even though the optimal set of clusters can be found, this is the only method where ungauged catchments could not be 
sorted into clusters based on their CDs. 

3.6. Goodness-of-fit measures 

During the dimension reduction analysis, the following goodness-of-fit measures were used: Pearson correlation coefficient (r [-]), 
Nash-Sutcliffe efficiency (NSE [-]) (Nash and Sutcliffe, 1970), root-mean-squared error (RMSE [hr]), Akaike information criteria (AIC 
[-]) (Fox, 2016), and the sum of relative differences (ΔTr [%]). These were calculated as: 

r =

∑N
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(xi − x)2∑N
i=1(yi − y)2

√ (2)  

NSE = 1 −
∑N

i=1(yi − xi)
2

∑N
i=1(xi − x)2 (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(yi − xi)
2

N

√

(4)  

AIC = N∙ln
(
RMSE2)+ 2∙(n+ 1) (5)  

ΔTr =

∑N
i=1|yi − xi|
∑N

i=1xi
100 (6)  

where xi is the observed value (Tr,obs), yi is the modeled value (Tr,mod), n is the number of model parameters (CDs) and N is the number 
of observations. The value of r can range from − 1–1, meaning perfect inverse linear and linear relationships, respectively, at its ex
tremes. The value of NSE demonstrates the model’s capability of giving a better estimation than the mean of the observed values, and 
its value can range from -∞ to 1. If NSE is in the range of 0–1, the model provides a better estimation than the observed values’ mean. 
An NSE value of 1 represents a perfect fit of the model. The RMSE value is 0 for a perfect fit, and the smaller the value the better the 
model. The value of AIC can quantify the relative information loss/gain of the models: a higher value denotes a more efficient equation. 
The value of ΔTr defines the model’s estimation error in percentage relative to the observed values. All measures were employed 
during the dimension-reduction analysis, while only RMSE and NSE were used for the cluster analysis. 

3.7. Existing empirical equations 

As mentioned in Section 1, the empirical equation for Tr estimation dates back to 1958 in Hungary (Wisnovszky, 1958). Many other 
countries/regions developed their own empirical equations, therefore a large amount of equations can be found in the literature. Also, 
there are numerous studies comparing different empirical equations and assessing their performances (e.g., Azizian, 2018; Kaufmann 
de Almeida et al., 2017; Nagy et al., 2016; Michailidi et al., 2018; Perdikaris et al., 2018; Ravazzani et al., 2019). In order to express the 
improvement in the estimation accuracy, four existing empirical equations were applied to estimate Tr. We chose to use the Wis
novszky, Salcher, Ventura, and Haktanir-Shezen equations. The first is the most often used equation in Hungary, and it was derived 
from the Salcher equation. The Ventura equation is also mentioned in one of the Hungarian textbooks. The Haktanir-Shezen equation 
was chosen based on the results of a former study (Nagy et al., 2016). The equations and their performance indices (RMSE and NSE) are 
presented in Table 2. 

Table 2 
The existing empirical equations and their performance indices. In the equations, L [km] is the longest flow path, A [km2] is the catchment area, S [%] 
is the slope of the longest flow path, and Lmax [km] is the length of the main stream (for more details see Appendix A1 and A3).  

Name and reference Equation RMSE [hr] NSE [-] 

Wisnovszky (1958) 
Tc =

L2
̅̅̅̅̅̅
A∙

√
S/100   

13.6  -0.680 

Salcher (Wisnovszky, 1958) Tc =
1

600
∙

L
̅̅̅̅̅̅̅̅̅̅̅̅̅
S/100

√
10.5  0.00508 

Ventura (Kaufmann de Almeida et al., 2017) 
Tc = 0.1272∙

̅̅̅̅̅̅̅̅̅̅̅̅̅
A

S/100

√ 11.3  -0.169 

Haktanir and Sezen (1990) Tc = 0.7473∙L0.841
max   9.31  0.210  
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4. Results 

4.1. Dimension-reduction 

One to three CDs were identified applying PCA, LCM, and APR. Eq. (1) was fitted using these CDs in each case. The model co
efficients in Eq. (1) were estimated by ordinary least squares. The model performance was assessed by executing leave-one-out cross- 
validation, consisting of the following steps: i) remove catchment j from the dataset; ii) estimate the coefficients of the equation using 
all (N-1) catchments without catchment j; iii) apply the fitted equation to estimate the value of Tr at catchment j (Tr,mod,j); iv) repeat 
steps i)-iii) for all N catchments; v) calculate the goodness-of-fit measures (r, NSE, RMSE, AIC, ΔTr). As a result, one equation for each 
dimension-reduction technique was selected and used afterward during the evaluation of the clustering techniques. 

PCA showed that the first three PCs explain 26.7%, 14.3%, and 10.2% (51.2% altogether) of the total variance of the dataset. The 
CDs having the highest loads on the PCs are P (basin perimeter), Hmax (maximum elevation), and Rc (elongation ratio). Two of these 
CDs (P and Hmax) belong to the size and relief category, while Rc is a shape index. The CDs having the highest loads on the following 
three PCs are MAP (mean annual precipitation), Cm (channel maintenance), and ks0 (saturated hydraulic conductivity). These CDs are 
part of the hydro-climatological indices, channel network parameters, and size and topography metrics, respectively. This underlies 

Fig. 6. Linear correlation matrix of the CDs (black: r ≥ 0.9, dark grey: 0.9 > r ≥ 0.7, light grey: 0.7 > r ≥ 0.4, white: 0.4 > r) and scatterplots of 
CDs and Tr with the strongest correlations. 
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the efficiency of PCA retaining the highest variability of the initial dataset since the resulting CDs do not belong into only one or two 
descriptor categories. 

The LCM method resulted in the correlation matrix of the CDs and Tr (Fig. 6). The CDs selected with this method are L (longest flow 
path), S (slope of longest flow path), and C (compactness). These parameters describe size, relief, and shape. L is strongly (r ≥ 0.9) 
correlated with SL, SN, A, P, Lb, and Lc, while S is strongly correlated with other relief metrics (Rr,1, Rr,2 and Rr,m). The latter is expected 
since their formulas are based on the ratio of the relief (H) and other strongly correlated CDs (L, P, Lb, A1/2). C is strongly correlated 
with c (circularity) because a functional relationship exists between these two metrics, namely c = 1/C2. The linear correlation matrix 
did not reveal any unexpected strong correlation amongst the CDs. It can also be seen that in some cases the correlation is not linear in 
nature (Fig. 6), which underlies the need for non-linear analyses, such as APR. 

The results of APR (i.e., empirical distribution functions) can be seen in Fig. 7, along with the performance of the other two (PCA 
and LCM) dimension reduction methods for r, NSE, RMSE, ΔTr, and by the number (1, 2, or 3) of CD values prescribed. Table 3 displays 
the fitted Tr equations and their performance metrics (for r, NSE, RMSE, AIC, and ΔTr). The coefficient values in the equations are the 
means of the values resulting from the cross-validation process. 

As expected, APR provided the lowest estimation error with an RMSE of 6.77 h and an NSE value of 0.583, employing three CDs. 
The LCM dimension reduction method outperformed PCA at every number of CDs. Increasing the number of CDs in the equations did 
not significantly reduce the prediction error in the case of PCA. In terms of probability, PCA and LCM identified CDs performing in the 
upper 20%. The value of NSE is negative for 39%, 18%, and 10% of the combinations when applying 1, 2, and 3 CDs, respectively. ΔTr 
varies from 34.6% to 43.8%, while r changes between 0.480 and 0.764. 

The AIC value of the best set of CDs does not change considerably when increasing the number of CDs from 2 to 3. The difference is 
more significant in the case of the LCM equations, while the variation in the performance is almost negligible considering the PCA 
equations. In what follows, the three-parameter versions of the equations were used to make the cluster analysis results more com
parable. The CDs of these equations (see Table 3) were applied subsequently during the cluster analysis when the equations’ co
efficients were recalculated for the clusters. The coefficients remained the same for the RE method as displayed in Table 3 since RE only 
consists of one cluster. 

4.2. Catchment grouping 

The general form of the fitted equation remained the same as in the case of the dimension-reduction (see Eq. 1), and the leave-one- 
out cross-validation was again performed (Laaha and Blöschl, 2006) as follows: i) remove catchment j from the dataset; ii) update the 
catchment grouping for the remaining N-1 catchments; iii) assign catchment j to one of the groups obtained in step ii); iv) estimate the 
coefficients of the equation using all (N-1) catchments apart from catchment j; v) apply the fitted equation to estimate the value of Tr at 
catchment j (Tr,mod,j); vi) repeat step i)-v) for all N catchments; vii) calculate the goodness-of-fit measures (RMSE and NSE). The final 
values of model coefficients can be assessed as the means of the model parameters calculated for the groups. In total, 111 equations 
were fitted, applying the seven clustering methods and creating two and four groups to fit the empirical functions employing the CDs 
determined by the three dimension-reduction methods. We created only one cluster applying the RE method which yielded only 3 
equations, while the other 6 clustering methods result in (2 + 4) × 3 equations each. So, we obtain 3 + 6 × (2 + 4) × 3 = 111 
equations. 

The CDFs of the performance indices (RMSE and NSE) resulted from the MC method, and the performance of the other clustering 
methods are presented in Fig. 8 and Table 4. The CDFs flatten as the number of groups increases from two to four. This is because, as the 
number of clusters increases, the number of catchments within a group decreases. Since the calibrated function is a power function, its 
sensitivity to extrapolation is relatively high. The model parameters are more stable when they are calibrated for a higher number of 
catchments. 

The MC approach clearly shows that the performance can be improved by at least 20% finding the right groups, but there is no 
unequivocal method that yields better results than RE. RA is able to find more efficient groups in some cases but does not improve the 
performance of the equations significantly. Also, it cannot be assured that using drainage texture (T) for RA as the independent variable 

Fig. 7. Cumulative distribution functions of |r|, NSE, RMSE, and ΔTr from APR (lines), along with the PCA and LCM performances for the prescribed 
number (1, 2, or 3) of CDs (markers). 
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Table 3 
Goodness-of-fit measures and their exceedance probability (p [%], the probability that a better relationship exists) of the different dimension- 
reduction methods and CD sets (CDs in the framed equations were used for the cluster analysis).  

Method Number of 
CDs 

r ΔTr NSE RMSE AIC 
[-] 

Equation 
Value 

[-] 
p 

[%] 
Value 
[%] 

p 
[%] 

Value 
[-] 

p [%] Value 
[hr] 

p [%] 

PCA 1 0.480 11.9 43.8 6.78 0.227 5.08 9.21 6.78 269 Tr = 0.50∙P0.73  

2 0.490 13.4 41.1 3.39 0.210 20.57 9.31 20.63 265 
Tr = 5.44∙

P0.83

H0.46
max⁡  

3 0.511 17 40.8 6.67 0.246 16.5 9.10 16.5 265 
Tr = 6.40∙

P0.72

H0.43
max⁡∙R0.46

c  

LCM 1 0.498 8.47 43.7 5.08 0.246 1.69 9.10 3.39 268 Tr = 1.33∙L0.70  

2 0.528 5.60 40.1 1.69 0.273 4.85 8.93 4.91 264 
Tr = 2.95∙

L0.47

S0.30  

3 0.702 0.3 37.5 0.54 0.489 0.31 7.49 0.31 238 
Tr = 1.70∙

L0.30∙C1.45

S0.25  

APR 1 0.931 0 42.8 0 0.261 0 9.01 0 266 Tr = 2.50∙A0.40
g  

2 0.810 0 35.8 0 0.547 0 7.05 0 236 
Tr = 48.8 ⋅ 

L0.84

(fc0 ⋅ 100 − 30)2.84  

3 0.764 0 32.2 0 0.583 0 6.77 0 233 
Tr = 48.7∙

A0.27
g ∙S0.72

b

(fc0∙100 − 30)2.57   

Fig. 8. Results of the different clustering methods. CDFs of a) RMSE and b) NSE resulting from the MC approach and three dimension-reduction 
methods (PCA, LCM, APR) creating two (blue) and four (red) groups, along with the goodness-of-fit measures of the different clustering techniques. 

Table 4 
Estimation errors (RMSE and NSE) of the seven clustering and three dimension-reduction methods for the different number of catchment groups.   

PCA LCM APR PCA LCM APR PCA LCM APR PCA LCM APR  

RMSE [hr] NSE [-] 

RE 9.10 7.50 6.77 9.10 7.50 6.77 0.25 0.49 0.58 0.25 0.49 0.58  

Two groups Four groups Two groups Four groups 

GC  9.41  7.78  9.14  11.14  7.80  9.24  0.19  0.45  0.24  -0.13  0.45  0.22 
MCmin  7.53  5.44  5.30  6.38  5.05  5.09  0.60  0.73  0.74  0.63  0.77  0.76 
KM  9.86  7.88  7.41  10.06  8.79  7.35  0.11  0.43  0.50  0.08  0.30  0.51 
HC  9.10  7.55  6.75  10.04  7.32  6.69  0.25  0.47  0.58  0.08  0.51  0.59 
RT  8.94  7.48  7.38  12.03  8.68  6.79  0.27  0.49  0.50  -0.32  0.31  0.47 
RA  11.27  7.14  6.53  8.34  8.37  7.21  -0.16  0.53  0.61  0.37  0.37  0.52  
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would lead to similar results for other catchments with different properties. It is hard to create an order for the different clustering 
methods in terms of performance. The efficiency of the different methods strongly varies with the number of clusters and CDs selected 
using the different dimension reduction methods. On average, GC and KM appear to give the worst results since those methods perform 
worse than RE in every case. HC and RA yield the best results, while the performance of RE and RT is intermediate. 

The probability of finding a better set of groups than RE (representing one group) is under 20% when creating two groups, and it 
goes below 5% in the case of four groups (Fig. 8.). Even the best performing RA reaches only the upper 10% of the CDF when creating 
two groups. In Table 3 we only provided the best performing set of CDs, but APR results in the list of best performing CD combinations. 
The authors found that when relying on the result of APR using one CD, the second best parameter, the catchment width (W) can be 
used to create both two and four clusters performing in the upper 1%. The optimal clusters found by the MC method and the groups 
created using W only are presented in Fig. 9. The catchment groups of the two methods differ; therefore, the connection between the 
catchments within a cluster resulting from the MC approach is not clear. However, the grouping based on W outperformed all other 
clustering methods with an NSE value of 0.693 and 0.697 as well as an RMSE value of 5.80 and 5.77 h, when creating two and four 
clusters, respectively. 

4.3. Existing empirical equations 

The four existing empirical equations performed worse than the derived new equations in general. The Haktanir-Shezen equation 
performed best in comparison with the equations including one CD (see Tables 2 and 3). However, even the equation created by using 
the result of PCA gave slightly better results. Interestingly and unfortunately, the most often applied Wisnovszky equation gave the 
worst results. Even the Salcher equation performed better, from which the former was derived. Wisnovszky’s methodology to improve 
the performance of the Salcher equation was purely theoretical. He introduced a parameter describing catchment shape, which is 

similar to Sb. In fact, the Wisnovszky equation can be written as Tc =
L∙S0.5

b
(S/100)0.5. Interestingly, the exponent of Sb (0.5) is very close to the 

one calibrated by the authors (0.46). However, instead of L and S, other CDs proved to be more efficient to estimate Tr. The Ventura 
equation’s performance is between Wisnovszky’s and Salcher’s. The NSE value reaches 0.210 in the case of the Haktanir-Shezen 
equation. Compared to that, the NSE value of 0.583 resulting from the APR method (see Table 3), using three CDs (without clus
tering) is clearly a significant improvement. The error of the most often used Wisnovszky equation underlines the need for the new 
empirical equation. 

5. Discussion and conclusions 

The variety of the selected CDs in the different dimension-reduction methods is relatively wide, which underlines the need for 
comparative studies. From a hydraulic point of view, it is not surprising that L and S showed the strongest correlation with Tr. Also, 
these two CDs are very often used in empirical and semi-empirical equations (Nagy et al., 2016) primarily when they are derived from 
the Chezy equation, such as the equation used in Hungary (Wisnovszky, 1958). Another often used CD is the catchment area (A); 
however, it was not selected by any of the dimension reduction methods. Instead, P and Ag were selected, which are closely related to 
A. Three shape indices (Rc, C, and Sb) were also selected by the three dimension-reduction methods applied, which denotes the in
fluence of catchment shape on response time. However, none of the hydro-climatological and channel network parameters were 
selected. 

The most exciting result appeared to be the selection of fc0 by APR, since it verifies the hydrological applicability of the 3D Soil 
Hydraulic Database of Europe (Toth et al., 2017). The inverse relationship between fc0 and Tr is plausible, since a lower water retention 
capability can lead to a higher amount of groundwater recharge, therefore, a higher proportion of subsurface runoff. The latter can be 
attributed to a slower response time than that for surface runoff, verifying fc0’s influence on Tr. Following this reasoning, BFI could 
have been selected instead of fc0 since its value should describe the same phenomenon. However, the calculated values of BFI do not 
necessarily represent the true values, since the exact amount of base flow is unknown. 

It was shown that PCA in itself is not sufficient to select the best CDs to predict a hydrologic variable. Even the simple and arbitrary 
LCM method outperforms PCA, especially as the number of involved parameters grows. APR is computationally more expensive and 
requires more advanced programming skills but yields the absolute best set of parameters and the CDFs of estimation error. The shift in 
the CDFs does not imply a significant improvement in the model performance due to increasing the number of CDs involved in the 
calibrated equation. Therefore, the use of 2 or 3 CDs is suggested for catchment with similar climatic and geographic conditions. 

The flattening of the CDFs in relation to the different number of groups applied clearly highlights the sensitivity of the derived 
equations to extrapolation. In the future, the applicability of fewer groups may be warranted. Based on the results related to the 
estimation of Tr, it is also questionable whether the use of six geographical regions is beneficial to estimate design flows in Hungary 
(General Directorate of Water Management, 2001). Considering the results of APR, the improvement in model performance is sig
nificant when two groups are created instead of one, but applying four groups instead of two does not yield a considerable change. 

The performance of the different clustering methods is highly variable. There is no distinguishable clustering method that performs 
best amongst the employed dimension-reduction methods and group numbers. This underscores further the effect and significance of 
CD selection. KM and HC are often used for clustering and are easy to perform using the built-in functions, e.g., in MATLAB, but they 
perform inconsistently. RA is the only method that outperforms GC in most cases, but it does not always perform better than RE. The 
authors suggest using catchment width (W) combined with APR to estimate Tr for catchment groups. This method is the most likely to 
provide the best results in similar climatic and geographic conditions. However, the thresholds for W to differentiate between clusters 
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[as presented in Fig. 9. a) & b)] may not yield similarly satisfactory results for a different set of catchments. The authors found it 
surprising that from the 60 more or less complex CDs, W appeared to provide a solid base to create catchment groups. Since W is related 
to both catchment size and shape, it is not unlikely that this result can be verified for another set of catchments. 

As a summary, we collected 60 CDs for 61 Hungarian catchments, while calculating the characteristic, observed value of Tr. First, 
we compared eight different graphical definitions of Tr (Nagy and Szilágyi, 2020), then we applied the method of Giani et al. (2021) to 
calculate the value of Tr at the event scale. In this paper, we presented the outcome of a broad study involving three dimension 
reduction and seven clustering techniques, which yielded significantly more accurate empirical equations than the ones employed in 
Hungary. However, there are still many further possibilities in the research of relating Tr to catchment characteristics. 

The efficiency of other clustering methods, such as Bayesian networks, as presented by Ssegane et al. (2012) and/or neural net
works, should also be evaluated. As Ravazzani et al. (2019) state, the value of Tr is only weakly driven by climatological and 
morphological factors. Two approaches could deal with this problem: i) evaluating calculations based on hydraulic equations as in 
Beven (2020) or Michailidi et al. (2018), and; ii) employing a stochastic approach. The difficulty with the former approach is to set a 
proper value for the hydraulic parameters, such as roughness. The latter approach means that observed values could be employed to fit 
a theoretical distribution function. The parameters of the distribution can then be connected to catchment characteristics. The authors 
wish to evaluate both of these approaches in the future in order to further examine and explain the variability in the observed value of 
Tr, as illustrated in Fig. 3. Continuing the study presented in this paper this way will hopefully lead to a more detailed and accurate 
estimation of Tr. 
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Appendix A. List of geomorphological parameters 

A1. Size and relief  

Abbreviation Name Unit Reference Formula/Description 

W Basin width km Black (1972) The length of the line perpendicular to the longest flow path, passing the center of the 
catchment area, extended to the catchment boundary. 

Lc Length from centroid 
to outlet 

km Black (1972) The length of the line connecting the center of mass of the catchment area and the 
catchment outlet. 

Lb Basin length km  The broken line’s length, connecting the outlet point, the catchment centroid, and the 
end of the longest flow path. 

P Basin perimeter km   
A Basin area km2   

S Slope of longest flow 
path 

%  
S =

H/1000
L

∙100  

Sa Average slope of 
watershed 

%  Average of the slope raster, calculated using the Slope tool from the ArcHydro 
Toolbox. 

L Longest flow path km  Geometrically longest flow path, based on the DEM of the catchment (ArcHydro 
Toolbox/Longest Flow Path). 

Hmin Minimum elevation m a.s. 
l.   

Hmax Maximum elevation m a.s. 
l.   

Hmean Average elevation m a.s. 
l.   

Sms Main stream channel 
slope 

%  The average slope of the channel sections coinciding with the longest flow path. 

H Relief m Schumm (1956) H = Hmax − Hmin  

Rr,2 Relief ratio % Schumm (1956) 
Rr,2 =

H/1000
Lb

∙100  

Rr,1 Relative relief %  
Rr,1 =

H/1000
P

∙100  

Rr,m Melton relative relief % Melton (1965) 
Rr,m =

H/1000
̅̅̅̅
A

√ ∙100  

HI Hypsometric integral – Pike and Wilson 
(1971) 

HI =
Hmean − Hmin

H  
Di Dissection index – Singh and Dubey 

(1994) 
Di =

H
Hmax  

Sr Slope ratio – Al-Rawas and 
Valeo (2010) 

Sr =
Sms

Sa   

A2. Topography  

Abbreviation Name Unit Reference Formula/Description 

Au Urban (impervious) area % Copernicus 
(2020b) 

Au =
au

A
∗ 100, where au was calculated as the sum of the cell values multiplied 

by the cell size.  
Af Forested area % Copernicus 

(2020a) 
Af =

af

A
∗ 100, where af was calculated as the sum of the cell values multiplied 

by the cell size.  
Ag Grasslands %  Ag = 100 − (Au + Af )

Akarst Proportion of karst %   
ths0 Saturated water content – Toth et al. (2017) Averaged value of the gridded data at the topmost level (0 cm). 
fc0 Field capacity – Toth et al. (2017) Averaged value of the gridded data at the topmost level (0 cm). 
ks0 Saturated hydraulic 

conductivity 
cm/ 
day 

Toth et al. (2017) Averaged value of the gridded data at the topmost level (0 cm). 

wp0 Wilting point – Toth et al. (2017) Averaged value of the gridded data at the topmost level (0 cm).  
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A3. Channel network  

Abbreviation Name Unit Reference Formula/Description 

SN Total stream number pcs  Number of channel segments, divided by junction point. 
SL Total stream length km  The threshold for streams was 1 km2 catchment area. 
Lmax Length of main stream km  Length of the channel sections coinciding with the longest flow path. 
u Highest stream order – Strahler (1957) After Strahler’s hierarchical stream ordering. Lu, Nu, and Au are the length, 

number, and area belonging to the highest order of channels. 
Lu Main trunk length (highest 

stream order length) 
km   

Sin Sinuosity – Mueller (1968) Sin =
L
Lb  

Sf Stream frequency 1/ 
km2 

Horton (1945) Sf =
SN
A  

Dd Drainage density 1/ 
km 

Horton (1932) Dd =
SL
A  

Df Drainage factor –  Df =
Sf

D2
d  

Cm Channel maintenance km Schumm (1956) Cm =
1
Dd  

Lo Overland flow length km Horton (1945) Lo =
1

2∙Dd  
T Drainage texture 1/ 

km 
Smith (1950) T = Dd∙Df  

Rt Texture ratio 1/ 
km 

Smith (1950) Rt =
SN
P  

Rf Fineness ratio – Melton (1965) Rf =
SL
P  

Rb Bifurcation ratio – Singh and Yousuf 
(2000) 

Rb =
Nu

Nu− 1  

Rl Stream length ratio – Singh and Yousuf 
(2000) 

Rl =
Lu

Lu− 1  

Ra Area ratio – Horton (1932) Ra =
Au

Au− 1   

A4. Shape indices  

Abbreviation Name Unit Reference Formula/Description 

Lsc Distance from stream 
centroid 

km  The length of the line perpendicular to the longest flow path going to the centroid of the 
catchment. 

Rc Elongation ratio – Schumm 
(1956) Rc =

2∙
̅̅̅̅̅̅̅̅̅
A/π

√

Lb  
Sb Basin shape factor –  

Sb =
L2

A  
Rlw Length-width ratio –  Rlw =

L
W  

C Compactness – Horton (1932) C =
P

2∙
̅̅̅̅̅
π∙

√
A  

c Basin circularity – Miller (1953) c = 4∙π∙A
P2 =

1
C2  

F Form factor – Horton (1932) F =
A
L2

b  
K Lemniscate ratio – Chorley et al. 

(1957) K =
L2

b ∙π
4∙A  

t Eccentricity – Black (1972) 
t =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|L2
C − W2 |

√

W  
RN Ruggedness number –  RN =

H∙Dd

1000  
CON Contiguity index – Lagro (1991) 

CONij =

∑z
r=1Cijr

aij
− 1

v − 1  
A detailed description of the variables can be found inLagro (1991). The contiguity of land 
use patches was calculated, using the main categories (1–5) of the Corine Land Cover maps.  
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A5. Hydro-climatological indices  

Abbreviation Name Unit Reference Formula/Description 

MAR Mean annual runoff mm  Long-term average of the total annual runoff for the period of record. 
MAP Mean annual 

precipitation 
mm  Long-term average of the total annual precipitation for the period of record. 

α Runoff ratio –  α =
MAR
MAP  

BFI Base flow index –  Ratio of base flow and total flow for the period of record. 
FI Flashiness index – Baker et al. 

(2004) FI =
∑N

i=1

∑n
j=1

⃒
⃒
⃒qi,j − qi,j− 1

⃒
⃒
⃒

∑n
j=1qi,j

/N, where N is the number of years, n = 365(366), and q is the 

daily mean discharge.   

Appendix B. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.ejrh.2021.100971. 
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