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A B S T R A C T

Accurately quantifying large-scale terrestrial evapotranspiration (ET) remains hampered by poor para-
meterization of the physical processes that relate to ET. Previous studies suggested that the calibration-free
complementary relationship (CR) method that requires only routine meteorological data performed better than
main-stream atmospheric reanalyses, land surface or remote sensing models in estimating large-scale ET. Here
we simultaneously evaluate the latest machine learning-based upscaling of eddy-covariance measurements
(FLUXCOM) and the CR estimates against the water-balance derived ET rates of 18 large Hydrologic Unit Code-2
(HUC2) and 327 medium HUC6 basins across the conterminous United States. Overall, CR and FLUXCOM
perform comparably in representing the multiyear mean and temporal variations in annual ET at both, HUC2
and HUC6, scales for the 1979–2013 period. Such equally good skills also hold true for the 2003–2015 period,
during which FLUXCOM was driven solely by remote sensing data. However, the CR generally captures the long-
term linear tendencies in annual ET rates somewhat better than FLUXCOM. Because of its minimal data re-
quirement, the calibration-free version of the CR may continue to serve as a benchmarking tool for large-scale ET
simulations.

1. Introduction

A spatially and temporally explicit representation of land surface
evapotranspiration (ET) at regional/global scales is essential to under-
standing the Earth’s energy, water and carbon cycles (Jung et al., 2010;
Lemordant et al., 2018; Miralles et al., 2019). However, estimation of
large-scale ET remains saddled by difficulties in parameterizing the

physical processes that control ET in land surface models (LSMs) (Ma
et al., 2017; Stoy et al., 2019) and remote sensing (RS) algorithms (Liu,
2018; Zhang et al., 2016) because ET is affected by various environ-
mental and biophysical factors (Sun et al., 2020; Teuling et al., 2019).
Uncertainties can also result from poor accuracy in gridded vegetation
and soil data due to the complexity/heterogeneity of terrestrial eco-
systems, thus arguably presenting themselves as the key drivers of
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Abbreviations: α, Priestley-Taylor coefficient, dimensionless; γ, psychrometric constant, hPa °C−1; Δ, slope of the saturation vapor pressure curve at T, hPa °C−1;
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errors in the current parameter-rich ET models (Boisier et al., 2014;
Polhamus et al., 2013). Cai et al. (2019), for example, recently reported
that the ELMv1 (i.e., the land component of the Energy Exascale Earth
System Model of the U.S. Department of Energy) still failed to simulate
a reasonable response of ET to deforestation due mainly to in-
appropriate soil water- and plant-related model parameters. The latter
ones may be more intractable in large-scale ET modeling because cur-
rent widely-used leaf area index (LAI) products [e.g., the Global Land
Surface Satellite (Xiao et al., 2016), the Global Mapping LAI (Liu et al.,
2012), the LAI3g (Zhu et al., 2013), and the Terrestrial Climate Data
Record (Claverie et al., 2016)] were neither intraconsistent over time
nor interconsistent with each other due possibly to National Oceanic
and Atmospheric Administration satellite orbit changes or Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor degradation, as
was pointed out by Jiang et al. (2017).

As an alternative of the data-demanding LSMs and RS models that
require not only meteorological forcing but also vegetation and soil
information for ET estimation, the complementary relationship (CR)
(Bouchet, 1963) of evapotranspiration inherently accounts for the in-
tegrated effects of the soil-vegetation interface, thus making itself rely
solely on standard atmospheric variables (i.e., air and dew point tem-
perature, wind speed, and net radiation) to estimate ET. After more
than three decades of working with linear CR models (e.g., the Ad-
vection-Aridity model of Brutsaert and Stricker (1979)), Brutsaert
(2015), inspired by the work of Han et al. (2012), proposed a state-of-
the-art nonlinear CR framework by introducing additional boundary
conditions with physical constraints. Lately Han and Tian (2018) re-
derived their own boundary conditions, proposing a sigmoid CR model
that considers Han et al. (2012)’s model and the Advection-Aridity
model as two special cases. These remarkably improved the CR’s skill in
estimating ET, and simultaneously avoid the need of employing an
additional asymmetry coefficient [typically dependent on how wet-
environment (ETw) and potential evapotranspiration (ETp) rates are
represented] found in some linear CR models (Kahler and Brutsaert,
2006; Szilagyi, 2007; Ma et al., 2015). While Brutsaert (2015) nonlinear
CR model has been widely used to estimate ET over a diverse range of
ecosystems, the stumbling block of applying it across large spatial scales
has been the optimization of its key model parameter, the Priestley-
Taylor (PT) coefficient (α) (Priestley and Taylor, 1972) via ground-truth
ET data (typically by eddy covariance (EC), Bowen-ratio measurements
or water-balance-derived values). Even simple water-balances may be
difficult to derive on a continental scale because of the presence of
basins that are either ungauged or poorly gauged (Hrachowitz et al.,
2013; Sivapalan, 2003) for precipitation and/or discharge. Lately
Brutsaert et al. (2020) presented another version of the nonlinear CR
with the help of seven globally calibrated fitting parameters including
the PT α coefficient. Szilagyi et al. (2017) however had already pro-
posed an alternative and efficient scheme for deriving the α value
(without employing any additional parameters or measured/water-
balance-derived ET data) in their calibration-free and upgraded version
of the nonlinear CR of Brutsaert (2015), via the application of estimated
temperature and humidity gradients between the wet surface and the
air by inverting the Priestley-Taylor equation over wet areas that are
automatically identified within a given (and possibly large) spatial
domain. This novel version of the nonlinear CR thus avoids any “prior”
information of ground-truth ET for the usual calibration of α, a definite
advantage for large-scale ET estimation applications. A recent assess-
ment by Ma and Szilagyi (2019) demonstrated that this calibration-free
CR model performs better than the mainstream (at least those selected)
LSMs, RS models, and atmospheric reanalyses in estimating large-scale
ET, and is on a par with the FLUXNET Model Tree Ensemble (FLUXNET-
MTE) product, which represents a spatial upscaling of EC measurements
using a machine learning (ML) approach.

Indeed, the FLUXNET-MTE ET product (Jung et al., 2010) has been
extensively used in not only the evaluations of ET rates produced by
LSMs (Ma et al., 2017), RS models (Velpuri et al., 2013) and

atmospheric reanalyses (Draper et al., 2018), but also in the in-
vestigations of long-term dynamics in global terrestrial water and
ecosystems (Feng et al., 2017; Sun et al., 2016). Nevertheless, because
FLUXNET-MTE only used one ML algorithm for upscaling, uncertainty
still exists since different ML methods may have different responses
during the training processes (Tramontana et al., 2016). To reduce
multiple sources of uncertainties in empirical upscaling of EC mea-
surements, Jung et al. (2019) recently produced global energy flux
products (net radiation, sensible and latent heat) called FLUXCOM,
employing an ensemble of multiple ML approaches. However, the
FLUXCOM ET (i.e., latent heat) products were only compared with the
Global Land Evaporation Amsterdam Model (Martens et al., 2017),
LandFLUX-EVAL (Mueller et al., 2013) and FLUXNET-MTE (Jung et al.,
2010) model data, but have not yet been evaluated against ground-
truth ET results such as derived by a water-balance approach, which is
often considered the most accurate way to validate any large-scale ET
products (Liu, 2018; Rodell, 2004). In this context, the accuracy of the
FLUXCOM ET products remains unknown. At the same time, while the
above mentioned and water-balance verified calibration-free CR model
may serve as a benchmarking tool for large-scale ET simulation (Ma and
Szilagyi, 2019; Ma et al., 2019), and has been further employed for not
only detecting long-term regional ET trends (Szilagyi, 2018a; Szilagyi
and Jozsa, 2018) but also providing the baseline ET data for nation-
wide drought monitoring (Kim et al., 2019; Kyatengerwa et al., 2020),
it is yet unclear how the FLUXCOM ET estimates compare with those of
the CR.

The specific objective of the present study this way is a simulta-
neous assessment of the annual ET rates of the calibration-free CR and
the latest ML-based ET product, FLUXCOM, against the water-balance
results of 18 first-level two-digit Hydrological-Unit-Code (i.e., HUC2)
and 327 third-level six-digit HUC (i.e., HUC6) basins across the con-
terminous United States (CONUS). By aiming at this goal, we also ex-
pand the previous work of Ma and Szilagyi (2019). The paper is
structured as follows: Section 2 introduces the CR and FLUXCOM ET
products as well as the water balance method within the planned
evaluations. Section 3 considers the evaluation results with regard to
the multi-year mean, long-term trends and temporal variations in an-
nual ET. Section 4 presents discussions and the conclusion.

2. Data and Methods

2.1. Complementary-relationship-based ET estimates for CONUS

The calibration-free nonlinear CR model of Szilagyi et al. (2017)
was employed for large-scale ET estimation across the CONUS, relating
two dimensionless evapotranspiration terms in the form

=y X X(2 ) 2 (1)

where y and X are defined as

=X
ET ET
ET ET
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here ET is the actual evapotranspiration rate, while ETp the potential
evapotranspiration rate, i.e., the evapotranspiration rate of a small wet
patch in a drying (i.e., not fully wet) environment, estimated by the
Penman (1948) equation
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where Δ is the slope of the saturation vapor pressure curve at air
temperature, T, and γ the psychrometric constant. Rn and G are net
radiation and ground heat flux in water equivalent of mm d−1, while eo
and ea are the saturation vapor pressure at T and the dew-point
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temperature (Td), respectively. fu is the wind function (Brutsaert, 1982)
containing the 2-m wind speed (u2), i.e.,

= +f u0.26(1 0.54 )u 2 (5)

ETw is the wet-environment evapotranspiration rate, observed over
a regionally extensive well-watered surface, specified by the Priestley
and Taylor (1972) equation, i.e.,

=
+

ET R G( )T

T
w

w

w
n (6)

Note that Eq. (6) was derived for completely wet environments by
Priestley and Taylor (1972), and therefore, ΔTw should be evaluated at
the air temperature, Tw, observed in a wet environment, instead of the
typical, drying environment T (Szilagyi, 2014). By making use of a mild
vertical air temperature gradient (Szilagyi, 2014) observable in wet
environments (as Rn is consumed predominantly by the latent heat
flux), Tw can be approximated by the wet surface temperature, Tws.
Note also that Tws may still be larger than T when the drying-en-
vironment air is near saturation, but not Tw, due to the cooling effect of
evaporation, and in such cases Tw should be capped by T (Szilagyi and
Jozsa, 2018). Szilagyi and Schepers (2014) demonstrated that the wet
surface temperature is independent of areal extent, thus Tws can be
obtained by iteration from the Bowen ratio (β) of a small wet patch
(assuming that available energy for the wet patch is close to that of the
drying surface) for which the Penman equation is valid, i.e.,

=
R G ET

ET
T T

e e
n p

p

ws a

o, Tws a (7)

here eo,Tws is the saturation vapor pressure at Tws. For continental-scale
model applications, the method of Szilagyi et al. (2017) for assigning an
appropriate value of α by utilizing observed gridded T and humidity
data over automatically-identified wet grid-cells was used [see the
Appendix B of Ma and Szilagyi (2019) for details]. The α value of 1.15
derived by Szilagyi (2018b) for the CONUS was retained for the present
monthly ET simulation.

ETpmax in Eq. (2) is the maximum value that ETp can, in theory,
reach during a complete dry-out (i.e., when ea becomes negligible) of
the land surface, i.e.,

=
+

+
+

ET R f e( G)pmax
Tdry

Tdry
n

Tdry
u o, Tdry

(8)

in which ΔTdry and eo,Tdry are the slope of the saturation vapor pressure
curve and the saturated vapor pressure, respectively, at the dry-en-
vironment air temperature, Tdry. The latter can be estimated from the
adiabat of an air parcel in contact with the drying surface under con-
stant Rn – G (Szilagyi, 2018a), i.e.,

= +T T
e

dry wb
o, Twb

(9)

where eo,Twb is the saturated vapor pressure at the wet-bulb tempera-
ture, Twb. Twb can be derived by another iteration of writing out the

Fig. 1. Spatial distribution of the (a) 18 HUC2, and; (b) 334 HUC6 basins across the conterminous United States. Overlain of HUC2 are the multiyear mean annual
aridity index, i.e., the ratio of multiyear mean annual PRISM precipitation to Penman potential evapotranspiration calculated by Eq. (4); while overlain of HUC6 are
the multiyear mean annual precipitation from PRISM. The name of each HUC2 basin is shown. Seven HUC6 basins, marked with the yellow star, were left out from
the analysis because of outlying ETwb and/or Q values.
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Bowen ratio for adiabatic changes (Szilagyi, 2014) as

=T T
e e

1wb a

o, Twb a (10)

Readers are kindly directed to Ma and Szilagyi (2019) for a detailed
pseudocode that describes the necessary steps to run the model with
routine meteorological data. Please, also refer to the Abbreviations for a
complete list of the variables (including measurement units).

In the present study, the calibration-free CR model was applied in a
continuous monthly simulation over the 37-year period of 1979–2015
across the CONUS, employing the 4-km spatial resolution Parameter-
Elevation Regressions on Independent Slopes Model (PRISM) T and Td
data (Daly et al., 1994). The 32-km North American regional reanalysis
(NARR) surface Rn (assuming G is negligible at a monthly scale) and 10-
m wind speed (u10) data (Mesinger et al., 2006) were linearly inter-
polated onto the PRISM grid employing a power transformation

Fig. 2. Spatial pattern of the ratio of basin-wide multiyear (1979–2013) mean annual model ET of (a) CR and (b–d) three RS_METEO products of FLUXCOM to ETwb
of the 18 HUC2 basins and (e–h) the corresponding regression plots. The length of the whiskers represents the standard deviation of the 35 annual values of each
basin. The strips around the red fitted line denote the 95% confidence intervals. RMSE is in millimeters per year.
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(Brutsaert, 1982) of the u10 values into u2 (=u10(2/10)1/7), required by
Eq. (5). The CR-derived monthly ET rates were aggregated into annual
sums for further evaluations.

2.2. FLUXCOM ET products

FLUXCOM (Jung et al., 2019) represents a state-of-the-art ML-based
upscaling of EC-measured surface fluxes where data from 224 flux
towers around the world were used to train multiple (i.e., three to nine)
ML methods. For details of the ML algorithms and their training, plus
cross-validations of the results, refer to Tramontana et al. (2016).
Briefly, FLUXCOM comprises of two groups of ET products, i.e., “RS” (at
0.0833° spatial and 8-day temporal resolutions) and “RS_METEO” (at
0.5° spatial and 1-day temporal resolutions). The RS product employed
only remote sensing data (i.e., MODIS) to estimate ET for the period of
2001–2015, while the RS_METEO products used both gridded meteor-
ological forcing and MODIS data for extended temporal coverages. The
meteorological forcing applied to create the RS_METEO products in-
clude i) WATCH Forcing Data ERA-Interim (WFDEI for 1979–2013)
(Weedon et al., 2015); ii) Global Soil Wetness Project 3 forcing (GSWP3
for 1950–2014) (Kim, 2017); and iii) a fused forcing of the Climate
Research Unit and National Centers for Environmental Prediction
(CRUNCEP for 1950–2016) (Wei et al., 2014). There is also a short
RS_METEO product driven by radiation from the Clouds and the Earth’s
Radiant Energy System and precipitation from the Global Precipitation
Climatology Project (Jung et al., 2019), but was excluded in the present
study since it only covers 2001–2014. Readers are suggested to refer to
Jung et al. (2019) for a thorough introduction on the FLUXCOM ET
products. In the present study, the 0.0833° RS ensemble ET product
during 2003–2015, generated from 27 members involving nine ML
methods and three energy balance closure correction methods, was
used. For the longer period, three 0.5° RS_METEO forcing-specific en-
semble ET products, driven by (i) WFDEI; (ii) GSWP3, and; (iii)
CRUNCEP, during the overlap period of 1979–2013 were applied. For
each meteorological forcing, the ensemble product is based on nine
members involving three ML methods and three energy balance closure
correction methods. All FLUXCOM products were aggregated into an-
nual sums for further evaluations.

2.3. Water-balance-derived HUC2 and HUC6 ETwb rates

All ET products were evaluated against the water-balance-based
evapotranspiration rates (ETwb) at 18 HUC2 and 327 HUC6 basins
across CONUS (Fig. 1), which were obtained as

=ET P Q Swb (11)

in which P, Q, and δS are basin-wide annual precipitation, runoff and
the change in terrestrial water storage, respectively. These basins are
characterized by various hydroclimatic regimes including sub-tropical
humid in the south-eastern CONUS, continental in the middle, oceanic
in the north-western, and semi-arid in the south-western part (Fig. 1),

which are appropriate for addressing the models’ skill in estimating ET
under diverse environmental conditions. The mean area of the HUC2
and HUC6 basins are ~430,000 km2 and 23,000 km2, respectively,
representing large to medium watersheds.

In the present study, annual precipitation from PRISM (Daly et al.,
1994) and HUC2 as well as HUC6 runoff data from United States
Geological Survey during 1979–2015 were used for Equation (11).
Considering the common temporal coverage of the FLUXCOM and CR
products, the present evaluations concentrate on two periods, i.e., the
longer period of 1979–2013 and the shorter one of 2003–2015. Over
the longer one the CR and three RS_METEO products of FLUXCOM,
while over the shorter one the RS product of FLUXCOM and the CR
were evaluated.

For the 2003–2015 period, δS values derived from the Gravity
Recovery and Climate Experiment (GRACE) (Tapley et al., 2004),
available only after 2002, were applied when calculating HUC2- and
HUC6-averaged ETwb. Specifically, the annual δS was calculated as the
difference in terrestrial water storage anomaly (TWSA) of successive
Decembers in two continuous years, in which TWSA is the arithmetic
mean value of three GRACE products processed by Geo-
forschungsZentrum Potsdam, the Center for Space Research at the
University of Texas, Austin, and by the Jet Propulsion Laboratory with
further consideration to the gain factors proposed by Landerer and
Swenson (2012).

For the 1979–2013 period that GRACE cannot fully cover, we used
the 0.5°, monthly TWSA data from the GRACE-REC (Humphrey and
Gudmundsson, 2019), in which TWSA was reconstructed using a sta-
tistical model with inputs of precipitation and temperature at each
global land grid for the past century. A series of evaluations against the
sea level budget and streamflow datasets by Humphrey and
Gudmundsson (2019) suggested that the GRACE-REC is a state-of-the-
art long-term TWSA product, which is especially useful for the pre-
GRACE era. The development of GRACE-REC involved two kinds of
GRACE products (for training purpose) and three kinds of climate for-
cing, thus leading to six different versions of GRACE-REC (see Table 3
in Humphrey and Gudmundsson (2019) for detailed information about
every version of GRACE-REC). In the present study, to calculate annual
δS for 1979–2013, we used the version based on the GSWP3 pre-
cipitation and temperature data that were calibrated with TWSA from
the Jet Propulsion Laboratory mascons.

Due to differences in the spatial resolutions between PRISM P,
GRACE and GRACE-REC δS, CR, and the FLUXCOM ET products, we
first used the nearest neighbor method to resample all products into the
common 0.125° grid. Then we calculated the basin-wide ET rates by
spatial averaging over each HUC2 or HUC6 basin using the 0.125° river-
mask for the corresponding basins.

The multiyear mean ETwb rates of the HUC2 and HUC6 basins are
shown in Fig. S1. Note that seven out of the original 334 HUC6 basins
were excluded (see Fig. 1b) in all evaluations because of outlier ETwb
and/or Q data in comparison with their neighbors.

To evaluate a given ET product against ETwb, we focused on three

Table 1
Statistical metrics for the evaluations of multiyear mean annual ET rates from the CR and FLUXCOM products for the HUC2 and HUC6 basins across CONUS. The best
values for each period are in bold.

Periods Products HUC2 HUC6

R RMSE* RB NSE R RMSE* RB NSE

1979–2013 CR 0.977 50.2 −0.84% 0.94 0.933 89.0 0.45% 0.86
WFDEI 0.975 92.9 14.10% 0.79 0.954 107.3 12.60% 0.79
GSWP3 0.975 67.2 7.75% 0.89 0.951 89.6 6.34% 0.86
CRUNCEP 0.963 96.3 14.37% 0.77 0.924 116.4 12.41% 0.76

2003–2015 CR 0.980 52.5 −0.45% 0.94 0.937 91.2 1.22% 0.85
RS 0.965 54.3 0.51% 0.93 0.939 82.3 0.42% 0.88

* RMSE is in mm yr−1.
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aspects: (i) the multiyear mean, (ii) the temporal variation in the annual
values, and; (iii) the linear trends in annual ET rates over the given
period. The employed statistical metrics (either spatial for the mean and
trend, or temporal for the annual time-series) included the Pearson
correlation coefficient (R), root mean square error (RMSE), relative bias
(RB), and Nash-Sutcliffe efficiency (NSE) between ETwb and basin-
averaged ET rates of every product. Note that in the assessment of the

trends, RB is not an effective measure (thus was excluded) because the
denominator may be very small if ETwb had little change over a given
period. For the time-series of basin-wide ET, the ratio of the interannual
variability (IAV) in modeled ET to that in ETwb (i.e., RIAV) was also
calculated to assess how well models capture the IAV in annual ETwb for
the given period.

Fig. 3. Spatial pattern of the ratio of basin-wide multiyear (1979–2013) mean annual model ET of (a) CR and (b–d) three RS_METEO products of FLUXCOM to ETwb
of the 327 HUC6 basins and (e–h) the corresponding regression plots. The strips around the red fitted line denote the 95% confidence intervals. RMSE is in
millimeters per year.
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3. Results

3.1. Spatial assessment of the multiyear mean annual ET rates

The CR displays the best performance with the highest NSE (0.94)
and R (0.977), and the lowest RMSE (50.2 mm yr−1) and RB (−0.84%)

values in comparison with the multiyear (1979–2013) mean ETwb rates
over the 18 HUC2 basins (Fig. 2 & Table 1). This is closely followed by
the RS_METEO product driven by GSWP3 with the NSE value dropping
to 0.89 and the RMSE and RB values jumping to 67.2 mm yr−1 and
7.75%, respectively. The other two RS_METEO products forced by
WFDEI and CRUNCEP exhibit weaker performances with similar NSE

Fig. 4. Spatial pattern of the ratio of basin-wide multiyear (2003–2015) mean annual model ET from (a) CR and (b) the RS product of FLUXCOM to ETwb of the 18
HUC2 basins and (c–d) the corresponding regression plots. The length of the whiskers represents the standard deviation of the 13 annual values of each basin. The
strips around the red fitted line denote the 95% confidence intervals. RMSE is in millimeters per year.

Fig. 5. Spatial pattern of the ratio of basin-wide multiyear (2003–2015) mean annual model ET from (a) CR and (b) the RS product of FLUXCOM to ETwb of the 327
HUC6 basins and (c–d) the corresponding regression plots. The strips around the red fitted line denote the 95% confidence intervals. RMSE is in millimeters per year.
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(0.79 and 0.77, respectively), RMSE (both more than 90 mm yr−1) and
RB (both roughly 14%) values among them. Based on the spatial pat-
tern of the ratio of ET to ETwb, both CR and GSWP3 have errors
within±10% over most HUC2 basins (Fig. 2a & c) except for (i) an
underestimation by 39% over the Lower Colorado basin in the CR, and;
(ii) an overestimation by roughly 37% over the Great Basin and

Northwest basins in the GSWP3 (see Fig. 1a for HUC2 basin identifi-
cation). WFDEI and CRUNCEP (Fig. 2b & d) tend to overestimate ET in
the majority of HUC2 basins, especially noticeable for the western
CONUS. The most significant positive bias occurred in the Great Basin
for, both, WFDEI and CRUNCEP by 55% and 41%, respectively.

The CR continues to yield the smallest RMSE (89.0 mm yr−1) and

Fig. 6. Regression plots of the trends in HUC2-averaged annual model ET from (a) CR and (b–d) three RS_METEO products of FLUXCOM against ETwb over the period
of 1979–2013. The length of the whiskers represents the standard error in the estimated slope value. The strips around the red fitted lines denote the 95% confidence
intervals. RMSE is in millimeters per year. The maps display the spatial distribution of the trends from (e) CR, (f–h) three RS_METEO products of FLUXCOM and (i)
ETwb.
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RB (0.45%) values (Fig. 3) for the 35-year average of the ET rates
among the much smaller HUC6 catchments. For the NSE value, CR and
GSWP3 are comparable with an identical value of 0.86 (Table 1), which
is higher than other products’. Both, WFDEI and GSWP3, display larger
RMSE and RB values, while producing better R values (0.954 and
0.951, respectively) than CR (0.933). CRUNCEP still performs the
weakest with the largest RMSE and the lowest NSE and R values.
Spatially, widespread positive biases occur in all three RS_METEO
products of FLUXCOM (Fig. 3b, c & d), with a reduced range, as can also
be seen from their fitted slopes significantly smaller than unity (Fig. 3f,
g & h). In contrast, CR appears to have a balanced performance across
CONUS with a slope (0.97) close to identity (Fig. 3e).

The RS product of FLUXCOM over the shorter temporal coverage of
2003–2015 performs similarly to the CR at the HUC2 scale in describing
the multiyear mean ET (Fig. 4), as was evidenced by comparable sta-
tistical metrics in Table 1. However, at the HUC6 scale during the same
13-year period (Fig. 5), the RS product of FLUXCOM improves a bit
upon the CR due probably to benefitting from direct EC measurements
at this smaller scale, as can be seen from the higher NSE (0.88 vs. 0.85)
and smaller RMSE (82.3 vs. 91.2 mm yr−1) values (Table 1). Note also
that a significant underestimation of ET in partial regions of Arizona
and Nevada exists in the CR model, which to a large extent is mitigated
in the RS product of FLUXCOM, partly due to a flatter slope in those
values (i.e., 0.87 vs. 1.02 for CR) (Fig. 5). The reason for under-
estimation of the CR in these arid catchments is not yet clear, but if ET
rates are patchy in time (and in space as well), meaning very high rates
during and shortly after relatively few precipitation events (and more
persistently from phreatophyte vegetation), and low rates otherwise
due to the water-conserving behavior of semi-arid vegetation, then the
monthly mean input values (e.g., air humidity) of the CR may miss or
significantly smooth out such sudden spikes. This effect is not so severe
over the larger HUC2 basins (c.f., Fig. 4), as they would contain
mountainous regions where precipitation is more abundant. Of course,
the daily EC measurements employed by FLUXCOM would not be so
affected.

3.2. Assessing the trends in annual ET

The CR is particularly robust in estimating trends in HUC2-averaged
annual ET rates during 1979–2013, as evidenced by the highest NSE
(0.79) and the lowest RMSE (0.7 mm yr−1) values in Fig. 6 and Table 2.
However, all three RS_METEO products of FLUXCOM tend to predict
very narrow ranges (seen in reduced slope values) for the (increasing/
decreasing) trends when compared to ETwb values of the 18 HUC2
basins (Fig. 6b, c & d), thus underestimating long-term tendencies. The
spatial distributions of the trends in annual ET rates corroborates this:
GSWP3 and CRUNCEP produce much milder ones than ETwb at most
HUC2 basins. Such a discrepancy is especially true for (i) the south-
western CONUS where ETwb decreased obviously (Fig. 6i) but only
slight corresponding changes are found in these two products (Fig. 6g &

h), and; (ii) the southeastern CONUS, where trends are opposite be-
tween ETwb and these two products (see Fig. 6g, h & i). While the biases
in trends diminish to some extent in the WFDEI product (Fig. 6b &
Table 2), it still underestimates the decreasing trend of ETwb in the
southwestern US (Fig. 6f). On the whole, CR accurately describes the
trends in annual ET rates over most HUC2 basins exceptthe Missouri
basin with a trend opposite to the one in ETwb (see Fig. 6e & i).

At the HUC6 scale where ETwb is more uncertain [e.g., due to pos-
sible (i) differences in catchment boundaries between surface- and
groundwater; (ii) enhanced role of interannual reservoir storage
changes in the water balance], the skills of all models estimating the
trends in ET rates during this 35-year period appear inferior to similar
measures found at HUC2, as can be seen from the decreased NSE and
increased RMSE values (Table 2). The highest NSE (0.31) and R (0.632)
values are provided by WFDEI, yielding an RMSE value (1.7 mm yr−1)
identical to that of the CR, the latter also producing the largest slope
value (0.37) (Fig. 7 & Table 2). In a spatial manner, however, none of
the RS_METEO products of FLUXCOM could well capture the significant
decreasing trend in ETwb over western Texas, southern Arizona and
New Mexico (Fig. 7i) during 1979–2013, while the CR was the only one
showing magnitudes of change similar to those in ETwb (Fig. 7e). Note
again that the trends from all three RS_METEO products of FLUXCOM
seem much milder than those from ETwb due possibly to their under-
estimated IAV of annual ET rates (see Section 3.3), as can be seen from
the milder fitted slopes ranging from 0.13 to 0.22 (Fig. 7b, c & d). In
general, GSWP3 and CRUNCEP exhibit poorer performance for the
trends at the HUC6 scale with NSE values of about 0.2 (Fig. 7c & d),
consistent with their results at the HUC2 scale.

During the short period of 2003–2015, the CR’s ability (NSE = 0.08
and RMSE = 2.4 mm yr−1) in estimating the ET trends at the HUC2
scale is again better than that of the RS product of FLUXCOM (Table 2),
the latter producing a negative (−0.79) NSE value (Fig. 8b). Moreover,
the spatial pattern of trends by the CR (Fig. 8c) generally follows that in
ETwb (Fig. 8e), the latter exhibiting overall increasing trends for most
HUC2 basins in the eastern CONUS. However, the RS product of
FLUXCOM yields decreasing trends for most parts of the eastern CONUS
(Fig. 8d).

The performance of the CR in estimating trends in annual ET rates
during 2003–2015 does not change much at the HUC6 scale, with NSE
and RMSE values of 0.14 and 5.4 mm yr−1, respectively (Fig. 9a). The
RS product displays again weaker performance with a negative (−0.19)
NSE value (Fig. 9b & Table 2) due mainly to its large errors in the
eastern CONUS (see Fig. 9d & e), similar to above-mentioned con-
trasting trends for the HUC2 basins.

3.3. Assessing the temporal variations in annual ET

The arithmetic averages of the statistical metrics of the CR and
FLUXCOM performance in simulating the annual ET time series of the
18 HUC2 or 327 HUC6 basins were used for assessing the temporal
variations in annual ET. The only exception is the NSE value where the
median was computed due to the occasional large negative values for
basins where the difference in multiyear modeled and water-balance ET
averages is large.

For capturing temporal variations in annual ET rates during
1979–2013, the CR and FLUXCOM exhibit overall similar performances
in terms of RMSE, RB and NSE values for both HUC2 (Fig. 10) and
HUC6 (Fig. S2) scales. The IAV in ETwb was unanimously under-
estimated, the strongest in the three RS_METEO products of FLUXCOM
with RIAV values less than 50%, while CR achieves about 80%
(Fig. 10d). Over the period of 2003–2015 (Figs. 10f–j & S2f–j), the CR
also yields better performance in RIAV (~60% and ~30% for CR and RS
products, respectively), while in the NSE, RB and RMSE values the CR
again performs similar to the RS product of FLUXCOM in both spatial
scales.

Table 2
Statistical metrics for the evaluations of trends in annual ET rates over given
periods from the CR and FLUXCOM products for the HUC2 and HUC6 basins
across CONUS. The best values for each period are in bold.

Periods Products HUC2 HUC6

R RMSE* NSE R RMSE* NSE

1979–2013 CR 0.901 0.7 0.79 0.553 1.7 0.29
WFDEI 0.920 0.9 0.60 0.632 1.7 0.31
GSWP3 0.860 1.2 0.35 0.599 1.8 0.21
CRUNCEP 0.876 1.2 0.37 0.573 1.8 0.20

2003–2015 CR 0.608 2.4 0.08 0.473 5.4 0.14
RS 0.448 3.4 −0.79 0.391 6.3 −0.19

* RMSE is in mm yr−1.
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4. Discussions and Conclusion

4.1. Uncertainties in model validation using the water balance method

It must be recognized that the reported model performances may be
confounded by possible errors embedded in ETwb (Carter et al., 2018;
Liu, 2018). While δS has been considered for both short (2003–2015)

and long (1979–2013) periods, the coarse spatial resolutions of GRACE
and GRACE-REC would probably cause biases in ETwb of small water-
sheds, which may be particularly true for the HUC6 basins. Besides,
while PRISM P is one of the most thoroughly validated land-measured
precipitation dataset for CONUS because it considers the effects of
elevation, rain shadows, and coastal proximity in the interpolation
process (Daly et al., 2008), the ubiquitous underestimation in

Fig. 7. Regression plots of the trends (1979–2013) in basin-wide annual model ET from (a) CR and (b–d) three RS_METEO products of FLUXCOM against ETwb of the
327 HUC6 basins. The strips around the red fitted lines denote the 95% confidence intervals. RMSE is in millimeters per year. The maps display the spatial
distribution of the trends from (e) CR, (f–h) three RS_METEO products of FLUXCOM and (i) ETwb.
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precipitation measurements due to, e.g., wind-induced undercatch as
well as wetting and evaporation losses (Yang et al., 2005; Sieck et al.,
2007), could lead to uncertainties in any gridded precipitation data
(Lundquist et al., 2019). However, the errors found in the PRISM P
estimates are mostly within 5 to 15% of the recorded ground station

values (Jeton et al., 2005; Daly et al., 2008, 2017). While quantifying
the errors in the ETwb values emerging from precipitation and/or δS is
beyond the scope of the present study, a detailed analysis of such un-
certainties in the water balance approach would certainly benefit the
overall validation of large-scale ET products.

Fig. 8. Regression plots of the trends in HUC2-aver-
aged annual model ET from (a) CR and (b) the RS
product of FLUXCOM against those in ETwb over the
period of 2003–2015. The length of the whiskers re-
presents the standard error in the estimated slope
value. The strips around the red fitted lines denote
the 95% confidence intervals. RMSE is in millimeters
per year. The maps display the spatial distribution of
the trends from (c) CR, (d) the RS product of
FLUXCOM and (e) ETwb.

Fig. 9. Regression plots of the trends (2003–2015) in
basin-wide annual model ET from (a) CR and (b) the
RS product of FLUXCOM against those in ETwb of the
327 HUC6 basins. The strips around the red fitted
lines denote the 95% confidence intervals. RMSE is in
millimeters per year. The maps display the spatial
distribution of the trends from (c) CR, (d) the RS
product of FLUXCOM and (e) ETwb.
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4.2. Relative merits of FLUXCOM and CR

The recently available powerful ML techniques have stimulated
substantial advances in hydrological research such as the estimation of
precipitation (Tang et al., 2018), soil moisture (Kolassa et al., 2018),
snow water equivalent (Bair et al., 2018), runoff (Yaseen et al., 2019)
and drought forecasting (Deo et al., 2017). In particular, the ML-based
upscaling of EC-flux measurements to regional (e.g., Fang et al., 2020)
or global scales (e.g., Jung et al., 2019) has greatly boosted our un-
derstanding of ET at extended spatial and temporal dimensions, al-
though the low density of EC towers in certain areas (e.g., Africa, South
America, West and South Asia) may not be sufficient to exploit the
capability of ML to extract relevant characteristics of space structure.
Note also that while the RS product of FLXUCOM takes full advantage
of remotely sensed data and exhibits excellent skills in representing the
spatial pattern of the multiyear mean ET rates, it performs poorly for
the trends in annual ET (see Figs. 8 & 9) due possibly to the calibration
degradation of MODIS Collection 5 data (Wang et al., 2012), in which
the Enhanced Vegetation Index (a key variant used for training the RS
product of FLUXCOM) has not been well calibrated (Lyapustin et al.,
2014). This indicates that incorporating further advanced satellite ob-
servations may benefit RS-based machine learning of ET in the future.
In addition, the uncertainty in any ET models can also result from the
uncertainty in the meteorological forcing. For example, the evaluation
by Tang et al. (2017) suggested that CRUNCEP still has obvious biases

in its temperature and precipitation data when compared with the
station-measured results of 90 cities in United States, though CRUNCEP
has improved a little bit upon the NCEP I and NCEP II reanalyses, which
might be the reason why CRUNCEP-based RS_METEO product of
FLUXCOM exhibits larger biases in ET estimates across CONUS (see
Tables 1 & 2).

While the CR performs comparably to (for the trends better than)
FLUXCOM in the estimation of ET across the CONUS, it is worthwhile to
highlight that FLUXCOM produced not only ET but also net radiation
and sensible heat fluxes (Jung et al., 2019) as well as carbon fluxes
including gross primary production and net ecosystem exchange (Jung
et al., 2020) with a worldwide coverage over the last few decades. This
way FLUXCOM complements a holistic view of land-atmosphere en-
ergy, water, and carbon exchanges at a global scale that may not be
otherwise possible from any other single dataset, which is particularly
vital for the developing countries where EC flux towers are spatially
sparser and temporally shorter than in developed ones (Chu et al.,
2017). The present validations suggest that the GSWP3-drived
RS_METEO product and the RS product of FLUXCOM perform well in
representing the multiyear mean ET (c.f., Figs. 2 & 4). We therefore
believe that FLUXCOM is certainly valuable for not only LSMs and RS
model evaluations but also provides fundamental constraints of global
energy and carbon cycling.

The most important merit of CR is that it relies solely on standard
atmospheric forcing (Han and Tian, 2020) to estimate ET without any
precipitation data, the latter being the most uncertain meteorological
variable to predict e.g., in climate models. Besides, CR avoids the
possible uncertainties in any gridded vegetation and soil data, which
are usually key inputs for most LSM- and RS-based ET models. How-
ever, a weakness of the present calibration-free CR as a benchmark for
calibration/verification of other large-scale ET models is that it is not
recommended to be employed on a daily or sub-daily bases. In fact,
Morton (1983) suggested not using the CR for periods shorter than five
days because large-scale weather fronts may bring air masses over the
land with a moisture signature decoupled from the underlying surface,
which thus may temporarily disrupt the dynamic equilibrium of air
humidity and surface fluxes in the land–atmosphere system. Hence, an
additional temporal aggregation of model simulations is necessary for
models that are driven by daily or sub-daily forcing before validating
them against the CR. Note also that the CR is not able to predict ET in a
prognostic mode (i.e., ET rates at a future time of t + dt) from the soil
moisture and vegetation status obtained at time t since it estimates the
cause (ET) from the effect (moisture content and temperature of the air)
(Ma and Szilagyi, 2019). However, the CR can be employed for reality
checks of the climate models’ future scenarios to see whether the pro-
jected state of the atmosphere is indeed in balance (via the CR) with the
assumed ET rates produced by the climate models.

In conclusion it can be stated that the CR is on a par with the
FLUXCOM ET products no matter which meteorological forcing and/or
satellite data are used in the latter. The CR however performs somewhat
better in representing the long-term ET trends than FLUXCOM. While
uncertainties exist in the CR-based ET results over certain regions, the
CR could still serve as a benchmarking tool for verifications of the
LSMs, RS, and ML-based large-scale ET estimates due to its robust
performance, minimal data requirement and calibration-free nature.
However, it should be emphasized again that FLUXCOM contains not
only ET but also other energy and carbon fluxes with a global coverage
and thus, continues to provide the community with a valuable reference
dataset for studies associated with large-scale terrestrial energy, water
and carbon cycles.
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