
Journal of Hydrology 613 (2022) 128355

Available online 24 August 2022
0022-1694/© 2022 Elsevier B.V. All rights reserved.

Research papers 

Estimation of catchment response time using a new automated 
event-based approach 

Eszter D. Nagy a,*, Jozsef Szilagyi a,b, Peter Torma a 

a Department of Hydraulic and Water Resources Engineering, Faculty of Civil Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 
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A B S T R A C T   

The estimation of catchment response time (Tr) plays an important role in several hydrological and civil engi-
neering design problems. The non-linear relationship between Tr and rainfall intensity necessitates the estimation 
of an event-based set of Tr values instead of a characteristic constant value. However, there is no generally 
accepted method to define individual rainfall-runoff events from time-series. Here we propose a new, automated 
method which results in the selection of rainfall-runoff events and the corresponding Tr values. The proposed 
method yields an event-based set of Tr values more efficiently than other existing methods and has only two 
parameters. The results of the new method were compared to those of a statistical and a semi-manual event 
selection approach. The latter calculates eight different Tr values, including the time of concentration, lag time, 
time to peak, and time to equilibrium. The median Tr value of the proposed method yields the strongest 
agreement with the median of the time elapsed between the maxima of the total rainfall and runoff with a root- 
mean-square error of 4.94 h. It is also demonstrated that a median time of concentration value can be estimated 
as the maximum of the event based Tr values by the current method. A sensitivity analysis explores the robustness 
of the proposed method, and also yields the optima of its two parameters. Once calibrated, the present automated 
methodology dispenses with any event selection procedure.   

1. Introduction 

Quantification of the catchment response to precipitation via time 
parameters is essential for engineering tasks, such as peak flow esti-
mation, rainfall-runoff modeling, or flood-risk/environmental hazard 
mapping. The most frequently used catchment response time (Tr) pa-
rameters are the time of concentration (Tc), the lag time (TL), the time to 
peak (Tp), and the time to equilibrium (Te) (Langridge et al., 2020). For 
example the Rational Method (Chow, 1988) is widely used to estimate 
the peak flow value to a given precipitation input and requires the 
calculation of Tc. However, the estimation error of the peak flow value 
may reach 75 %, due to the uncertainty in the Tc estimates (Bondelid 
et al., 1982). The response time of a catchment to extreme precipitation 
limits the time-interval available for flood defense or mitigation of 
environmental disasters, hence its accurate estimation can also assist in 
disaster prevention. 

Many rainfall-runoff models apply the unit hydrograph theory in 
some form (Beven, 2012). Therefore, Tc, TL, and Tp often appear as 

model parameters. TL, in a broader context, is the time between the 
occurrence of an event and the emergence of a response in the system of 
interest. The same interpretation of TL can be used to estimate how long 
rainfall will take to be translated into runoff in a given catchment (Amiri 
et al., 2019). Tp is defined as the rise time of a storm hydrograph, 
encompassing the time from the first stream contributions from a pre-
cipitation event to the arrival of the peak flow of the event (Langridge 
et al., 2020). The International Glossary of Hydrology (WMO, 1974) 
defines Tc as “the period of time required for storm runoff to flow from 
the most remote part of a drainage basin to the outlet”. In this definition, 
“storm runoff” is replaced with “a drop of water”, and “the most remote 
part” becomes “the furthest point” in many hydrologic texts. However, 
as Beven (2020) emphasizes, it is not the flow velocities that should be 
used to define the response times in a catchment, but the relevant sur-
face, subsurface and channel flow celerities or wave velocities. The latter 
yields the Te, as it is obtained by integrating the celerity from upslope to 
a downslope outlet, and can be interpreted as the time from the start of 
rainfall to peak response (for an initially dry catchment and steady 
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rainfall, by definition). 
Since the publication of Minshall’s (1960) classical work on storm 

runoff from small experimental watersheds, hydrologists agree that the 
rainfall–runoff response is fundamentally nonlinear (Szilagyi, 2007). 
Minshall (1960) derived response functions for certain small catchments 
which showed a pronounced dependence of TL on the intensity of 
rainfall excess. The value of Tr was proven to be decreasing with 
increasing rainfall intensity by many authors since (Reed et al., 1975; 
Loukas and Quick, 1996; Saghafian et al., 2002; Szilagyi, 2007; Zhang 
et al., 2007; Kjeldsen et al., 2016; Mathias et al., 2016; Meyersohn, 2016; 
Michailidi et al., 2018; Cuevas et al., 2019). Therefore, the event-based 
estimation may be of great use in hydrological applications, such as 
rainfall-runoff modelling or peak flow estimation. These tasks are 
especially challenging at ungauged sites, since the value of Tr is usually 
estimated by empirical formulas. However, the accuracy of empirical 
equations can be improved with the help of more reliable observed 
values of Tr. 

From studies focusing on time parameter estimation methods, the 
three main assessment procedures are based on i) measured data; ii) 
hydraulic equations (Loukas & Quick, 1996; Liang & Melching, 2012; 
Sabzevari et al., 2015; Baiamonte & Singh, 2016; Michailidi et al., 
2018), and; iii) empirical or semi-empirical formulas (Fang et al., 2008; 
McCuen, 2009; Grimaldi et al., 2012; Nagy et al., 2016; Abdel-Fattah 
et al., 2017; Kaufmann de Almeida et al., 2017; Ravazzani et al., 
2019). Measurements can be made employing i) laboratory models 
(Black, 1972; Zhang et al., 2007; Liang & Melching, 2012); ii) a tracer 
substance (Pilgrim, 1976; Azizian, 2019; Björn Rodriguez et al., 2021), 
or; iii) registering rainfall and runoff data (Loukas & Quick, 1996; 
McCuen, 2009; Grimaldi et al., 2012; Wu et al., 2016; Gericke & 
Smithers, 2017; Kaufmann de Almeida et al., 2017; Cuevas et al., 2019; 
Ravazzani et al., 2019; Langridge et al., 2020; Giani et al., 2021). Tracer 
measurements can yield detailed information on the runoff generation 
process of a catchment; however, it is mainly adaptable to small 
catchments. Such monitoring systems can be operated only for research 
and not for an operational purpose (Pilgrim, 1976). Nevertheless, only a 
tracer measurement can be considered as a direct measurement of Tr. 
The results obtained by employing laboratory models are not necessarily 
valid for natural catchments (Gaál et al., 2012). Due to the above 
mentioned applicability issues of tracer measurements and laboratory 
models, the present authors chose to estimate the observed value of Tr 
indirectly from recorded rainfall and runoff data. 

The main disadvantages of calculating Tr using observed rainfall and 
runoff time-series are i) difficulties with event selection, and; ii) the 

assessment of time instants on the hyeto- and hydrographs that require 
the separation of effective precipitation and direct runoff. 

The event selection can be performed manually, but this task is quite 
cumbersome and hard to reproduce, especially in the case of a large 
dataset (Thiesen et al., 2019). Several of the automated event selection 
methods rely on base flow separation (e.g., Merz & Blöschl, 2009; Mei & 
Anagnostou, 2015; Tarasova et al., 2018). The main disadvantage of 
these methods is that base flow is an elusive process to quantify 
compared to other components of the water balance, such as precipi-
tation and total runoff (Szilagyi et al., 2003). The true value of the base 
flow is usually unknown therefore its value can never be precisely 
quantified from just rainfall-runoff records. Additionally, these event 
selection methods may involve empirical estimation of parameters 
further reducing objectivity, while other methods, relying on machine 
learning, require training. Table 1 lists some recently published auto-
mated event selection methods with their weaknesses explained. 

Considering the attributes of the available event selection ap-
proaches, the statistical method of Fischer et al. (2021) appeared to be 
the most appropriate to compare the event-selection capability of the 
proposed technique. Additionally, a method requiring expert knowledge 
(from here on referred to as the semi-manual method) and involves vi-
sual screening of the selected events is also employed in conjunction 
with the present one in order to ensure a base set of regular hyeto- and 
hydrographs for the estimation of Tr. 

Once the events are selected, the ‘observed’ value of Tr can be 
derived for each event from temporal differences between specific time 
instants on the hyeto- and hydrographs via so-called graphical defini-
tions. Although the study of response-time parameters dates back more 
than 150 years, their definition and calculation are still intricate tasks. 
Time parameters cannot be uniquely identified due to their various in-
terpretations. This is underlined by the existence of numerous graphical 
definitions for Tc in the literature. McCuen (2009), for example, lists six 
definitions of Tc, out of which one is a definition of Tp, and two are 
definitions of TL. Even the most often used definition has two slightly 
different versions, namely the time from the end or center of mass of 
rainfall excess to the end of direct runoff (i.e., the inflection point on the 
total runoff hydrograph). Coincidentally, Giani et al. (2021) recently 
published a novel method to estimate Tr relatively easily and objectively 
from observed time-series. 

The new methodology called Detrending Moving-average Cross- 
correlation Analysis (DMCA) introduced by Giani et al. (2021) greatly 
facilitates the calculation of Tr. It allows the user to estimate the char-
acteristic value of Tr from long time-series while making possible the 

Table 1 
State-of-the-art automated event selection methods.  

Reference Events/ 
catchment/year 

Catchment area 
[km2] 

Region of study Temporal 
resolution 

Method applied Disadvantage(s) 

Khanal (2004) 0.715 unknown Texas, USA unknown Semi-automatic, based on 
unit hydrograph method. 

Manual extraction of multi-peaked events and 
events with unwanted shapes. 

Merz & Blöschl, 
(2009) 

7.02 5–10000 Austria Hourly Automated, based on 
several criteria. 

Requires base flow separation. 

Norbiato et al., 
(2009) 

2.55 7.3–608.4 Italian Alps Hourly Same as in Merz & Blöschl 
(2009). 

Same as in Merz & Blöschl (2009). 

Koskelo et al. 
(2012) 

64.8 14–293 Mid-Atlantic Region 
of North America 

Daily Sliding Average with Rain 
Record (SARR) method. 

Restricted to small basins and coarse (daily) 
temporal resolution. 

Mei & 
Anagnostou 
(2015) 

9.11 400–5900 North Carolina, USA Hourly Automated, physical basis. Only for basins with a clear recession period. 
Requires base flow separation. 

Tarasova et al. 
(2018) 

19.1 31–23700 Germany Daily Automated, based on 
several criteria. 

Requires base flow separation. 

Thiesen et al. 
(2019) 

19.7 113 Alps, Austria Hourly Data-driven method, based 
on information theory. 

Only tested on one catchment. Requires a 
high amount of training data. Selects only 
runoff events. 

Oppel & Mewes 
(2020) 

1.5–2.9 10–1400 Germany Hourly Machine learning. No code published. Requires training and 
employs only discharge data. 

Fischer et al. 
(2021) 

2.98 3–26000 Germany Daily Statistical analysis of long 
time-series. 

Employs nine parameters. Hourly temporal 
resolution was tested only on one catchment.  
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estimation of Tr at the event scale, using pre-defined subsections of the 
observed data for specific events. For performing the latter, event se-
lection must be done separately and beforehand. The event selection 
approach applied by Giani et al. (2021) is automated, but includes the 
empirical estimation of TL and a screening criterion regarding peak flow 
magnitude. 

The present authors aim to extend the DMCA-based Tr estimation 
method of Giani et al. (2021) by performing the event selection and 
estimation of a set of Tr values for the selected events simultaneously. 
This is achieved by introducing an additional parameter. From here on 
the currently proposed method is to be referred to as ‘event-scale DMCA’ 
or shortly, ‘E-DMCA’ method. Consequently, the study presented in this 
paper has three main foci:  

I. Validating the applicability of the proposed event-scale DMCA- 
based Tr estimation method for accurate event selection by 
comparing the results of the new approach with the results of a 
state-of-the-art, statistical and an expert-knowledge-based, semi- 
manual event selection method.  

II. Assessing the robustness and validity of the proposed range of the 
two parameters needed to perform the event-scale DMCA-based 
Tr estimation method by performing a thorough sensitivity 
analysis.  

III. Exploring the relationship between the event-based Tr values 
resulting from the often-used graphical definitions and the event- 
scale DMCA-based Tr estimation. 

Toward the first goal, we performed the previously mentioned semi- 
manual event selection (see Section 3.1) and assessed the value of Tr 
from each event by applying eight different graphical definitions 
collected from literature. Then, the new event-scale DMCA-based Tr 
estimation method was applied (see Section 3.3), which concurrently 
performs the event selection and the calculation of Tr using the DMCA- 
based method of Giani et al. (2021), obliterating the need for external 
event selection required by the DMCA-based Tr estimation method. 
Next, the statistics-based event selection method of Fischer et al. (2021) 
was evaluated to provide a comparative basis for the event selection 
capability of the proposed event-scale DMCA-based method (see Section 
3.2). The results of the three methods were compared in terms of the 
event selection and Tr values (see Sections 4.1 and 4.2, respectively). 
The sensitivity analysis mentioned in II is introduced in Section 3.4, 
while its results are presented in Section 4.3. A discussion on the per-
formance of the event-scale DMCA-based Tr estimation method is pro-
vided in Section 5, including a more detailed comparison of the Tr values 

given by the graphical definitions and those obtained by the proposed 
method. The conclusions of the present study are found in Section 6. 

Similar to Giani et al. (2021), the term of catchment response time 
(Tr) is employed throughout the text in general and the other time pa-
rameters (Tc, TL, Tp, and Te) are specified only when it is theoretically 
plausible. In what follows, the method presented by Giani et al. (2021) is 
referred to as the ‘DMCA-based Tr estimation (DMCA) method’, while 
the approach presented in this paper is called the ‘event-scale DMCA- 
based Tr estimation (E-DMCA) method’ or ‘proposed method’. The two 
event selection methods for testing the E-DMCA results are referred to as 
the ‘semi-manual event selection (SM) method’ and the ‘statistics-based 
automated flood event separation (SBES) method’. 

2. Study area and data 

In this study, 61 small- to medium-sized Hungarian catchments, six 
of them nested, were examined. Fig. 1 provides an overview of the 
catchments’ location, while relevant statistical measures are given in 
Table 2. The list of catchments is provided in Supplementary Material 
S1. The catchment IDs appearing throughout the text correspond to the 
ones presented in Supplementary Material S1. The mean catchment area 
is 206 km2, from a range of 8.74–810 km2. 54 % of the catchments are 
smaller than 150 km2, and 6.5 % have an area larger than 500 km2. 
Based on the high-resolution Copernicus land-use/land-cover products 
(Copernicus, 2020a; Copernicus, 2020b), the minimum forest coverage 
is 3.8 %, the maximum is 88.7 %, while the range of impervious area is 
0.3–19.9 %. A third of the catchments are located within karst regions. 
The dominant soil parent types are deposits: glacial and alluvial, loess 
and loess-like, tertiary, and older deposits. Volcanic rocks, such as 
andesite, rhyolite, and basalt, dominate only in a few (<5%) catch-
ments, while sandstone, shale, and phyllite cover even fewer catch-
ments. According to the Köppen climate classification (Peel et al., 2007), 
Hungary’s climate is predominantly warm-summer humid continental. 
The time window of the study extends from 2000 to 2017. During this 
period, the minimum amount of annual rainfall and catchment runoff 
were 394 and 21.1 mm, respectively, while the maxima were 1377 and 
642 mm. The aridity index varies between 0.75 and 1.25 among the 
catchments. 

The catchments were delineated using the Copernicus Land Moni-
toring Services’ EU-DEM v1.1 digital surface model, a freely available 
raster format dataset with a spatial resolution of 25 m (Copernicus, 
2016). High-resolution (5 min) discharge and precipitation time-series 
were provided by the local Water Directorates for 64 and 17 stations, 
respectively. Observed discharge were derived using measured water 

Fig. 1. Overview of the study area and catchments.  
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levels and rating curves. The three main catchment selection criteria 
applied were i) no considerable human influence on flow; ii) high 
temporal resolution of measurements, and; iii) continuous record 
available for at least ten years (similar to Sauquet & Catalogne, 2011). 
The first criterion was ensured by checking digital maps and consulting 
the local water directorates. Not every catchment has a rainfall gauging 
station near or in the catchment, and sub-daily precipitation data is not 
provided by the Hungarian Meteorological Service free-of-charge to 
obtain interpolated values. The 17 precipitation gauging stations oper-
ated by the local water directorates do not cover the whole study area, 
therefore they could not be used to interpolate precipitation data. 
Instead, European Centre of Medium-Range Weather Forecast (ECMWF) 
re-analysis data from the Copernicus Climate Data Store were used in 
addition to the gauging station values. For catchments without a 
gauging station, ECMWF data were used. The Era5 Land product 
(Copernicus Climate Change Service, 2019) provides hourly precipita-
tion time-series with a 0.1◦ x 0.1◦ (~9 km × 9 km) spatial resolution. 
The applicability of the ECMWF re-analysis data was examined sepa-
rately in a previous study by Nagy & Szilagyi (2020) where the results of 
the SM approach (see Section 3.1 for details) employing measured and 
also re-analysis data were compared at 38 catchments having (or the 
closest assigned) a precipitation gauging station. We found that the 
ECMWF data is adequate for Tr estimation, especially when the centers 
of masses and also, peaks of the observed runoff and rainfall time-series 
are used. 

3. Methodology 

3.1. Calculating catchment response time for events – SM method 

During a previous study (Nagy & Szilagyi, 2021), eight graphical 
definitions of Tr were collected and analyzed. The interpretation of 
definitions a)-h) is presented in Fig. 2. Definition a) is the most often 

used, i.e., conventional definition of Tc and definition b) is a slightly 
different version of the latter, however, definition a) is much more often 
used. Definitions e) and f) are infrequently used, i.e., unconventional 
interpretations of Tc reported by McCuen (2009), not used for any other 
time parameter (i.e., TL, Tp, or Te). Both definitions c) and d) stand for TL, 
even though only definition d) is correct by the unit hydrograph theory 
(Chow, 1988). Definition g) represents Tp and definition h) is the Te. 
Unfortunately, all definitions can be found in the literature as the defi-
nition of Tc (Wisnovszky, 1958; Loukas & Quick, 1996; McCuen, 2009). 

Most of the definitions [a)-e) and g)] require the separation of base 
flow and/or effective precipitation. In this study, the former was per-
formed using a recursive filtering method (Nathan & McMahon, 1990). 
The latter was calculated by assuming a constant-rate loss and equaling 
the direct runoff and excess rainfall volumes, known as the Φ-index 
method (Dingman, 2015). This way, only one parameter had to be 
adjusted: the coefficient of the recursive filter. It was manually cali-
brated for every catchment using the ten largest runoff events resulting 
from steps i)-ii) (see below), and validated for the smaller events. The 
aim of the calibration procedure (by a trial and error fashion) was to find 
a coefficient for each watershed that ensures the temporal coincidence 
of the end of the direct runoff and the inflection point on the recession 
limb. The latter was identified visually on the hydrographs. After the 
separations, all eight graphical definitions were calculated. 

The initial data set consisted of 64 catchments and 7189 events. After 
quality control and screening (see steps i)-vi) below), 2152 events 
remained for 61 catchments. For these events, the observed values of Tr 
were derived by the eight definitions presented in Fig. 2. The number of 
events per watershed ranges from 11 to 69. On average, 35 events were 
available for a catchment. The runoff event identification and screening 
procedure included the following steps:  

i) First, the peak flows were found in the streamflow time-series. 
Only peaks from the snow-free period (April 1 until October 

Table 2 
Minimum, maximum, and mean values of the important catchment descriptors.   

Catchment 
area [km2] 

Longest 
flowpath 
[km] 

Elevation 
[m a.s.l.] 

Mean slope of 
watershed [%] 

Highest stream 
order (Strahler, 
1957) [-] 

Ratio of 
impervious 
surfaces [%] 

Ratio of 
forests 
[%] 

Annual 
runoff 
[mm] 

Annual 
precipitation 
[mm] 

Aridity 
index [-] 

Minimum 8.74  5.08 103  1.1 2  0.3  3.8 21.1 394  0.75 
Maximum 810  88.3 1629  22.2 5  19.9  88.7 642 1377  1.25 
Mean 206  32.9 264  9.7 4  8.9  69.4 74.6 756  1.10  

Fig. 2. Graphical definitions of Tr most frequently occurring in the literature. Color codes: purple – conventional Tc; green – Tc and TL; grey – unconventional Tc; 
yellow – Tc and Tp; navy blue – Tc and Te. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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31) were selected, with a value higher than double the long-term 
mean flow. The beginning and the end of runoff events were 
found as the first time instant when base flow reached 90 % of the 
total flow before and after the peak, respectively. Applying this 
approach, 7189 events were collected and sorted in the 
decreasing order of peaks for 64 catchments automatically.  

ii) The selected events were then screened manually in order to 
provide a base set of regular hydrographs. These consist of a clear 
rising and falling limb, but can have multiple peaks. Events with 
unwanted shapes [e.g., having oscillating discharge (i.e., 
discharge changing continuously and periodically between two 
values, indicating measurement error of the water level), a long 
constant discharge segment, linearly increasing/decreasing seg-
ments, etc.] were identified visually and removed from the set of 
events, reducing the number of events by 61.5 %. The two main 
reasons causing an unwanted hydrograph shape were identified 
as measurement errors and missing measurements.  

iii) Next, the precipitation event related to each runoff event had to 
be determined. First, the algorithm found the beginning of the 
precipitation event as the first non-zero value before the start of 
direct runoff. Second, it defined the end of the precipitation event 
by searching for the last none zero value after the peak flow.  

iv) After the separation of direct runoff and effective precipitation 
(employing a recursive filter and the Φ-index method, respec-
tively), events with insufficient rainfall were dropped, causing a 
further 7.0 % loss of events.  

v) Three catchments were excluded from the dataset having less 
than ten events. The number of events dropped by 0.2 %.  

vi) After defining the necessary characteristic points on the hydro- 
and hyetographs, all eight definitions were calculated. Events 
producing negative Tr values were excluded, which meant 
another 1.4 % reduction, ending up with a total of 2152 events for 
the 61 catchments. 

3.2. Comparison of the event selection methods – SBES method 

The adequacy of the E-DMCA method in terms of event selection was 
demonstrated by comparing with one of the state-of-the-art event sep-
aration methods. However, no objectively verifiable rainfall-runoff 
event separation exists, therefore, an objective evaluation of the pro-
posed method is not possible. The statistics-based automated flood event 
separation (SBES) method of Fischer et al. (2021) was chosen for a 
comparison with the E-DMCA and SM methods. The main reasons for 
selecting this method were its i) reproducibility due to the freely 
available R package; ii) applicability for hourly time-series; iii) suit-
ability to select both runoff and the corresponding rainfall events, and; 
iv) convertibility to select not only floods, but also smaller runoff events. 
However, the SBES method was only tested for one catchment at an 
hourly temporal resolution by Fischer et al. (2021). As they state, their 
“method should not be easily transferred from daily to hourly values 
because of the different behavior of the runoff data.” 

Fischer et al. (2021) published recommended values for the nine 
parameters employed by the SBES method, however, these values were 
calibrated to select flood events from daily time-series. The parameters 
are:  

- The window for the moving variance of the 1-day (or 1-hour) 
discharge differences dvar. This parameter is generally catchment- 
dependent and can be chosen based on catchment size. The present 
authors used a single constant value for every catchment similar to 
Fischer et al. (2021).  

- The parameter for the variance threshold θ. A smaller θ leads to the 
selection of more events, therefore, it can be used to adjust the 
number of events selected per year if desired.  

- The three thresholds for defining the start of the flood event, η, γ and 
κ. Parameter η provides a threshold for the relative 1-day (or 1-hour) 

discharge difference for the flood event to start. Parameter κ controls 
the level of significant contribution a pre-flood has to have to be part 
of the flood event. If there is an increase in magnitude in excess of κ% 
of the total peak within γ + 1 days before the flood event, this “pre- 
flood” is included in the flood event. The parameter γ can be also 
chosen according to catchment size and climate region of the 
catchment.  

- Two parameters δ and ω to specify the end of the flood event. To find 
the end of the events, two criteria are compared. First, it is checked if 
the baseflow level at the start of the event is reached again. Second, it 
inspects whether the next ω time steps after the potential end of the 
flood event would add less than δ of the discharge volume of the 
falling limb if they were included. If either of these criteria are met, 
the end of the event is found.  

- The parameter ddur to specify a time window for superpositioned 
flood events. An extraordinary duration of a separated flood event 
with multiple peaks becomes an indicator for a series of super-
imposed flood events. The parameter ddur can be chosen according to 
the catchment size and the climatic conditions.  

- For the separation of the flood-inducing precipitation, the buffer b 
had to be defined by parameter ξ, where ξ is the minimum time lag 
between the start of precipitation and ensuing flood event. Its value 
can also depend on catchment size. 

The parameter values suggested by Fischer et al. (2021) include dvar 
= 3, θ = 0.25, η = 0.1, γ = 1, κ = 0.4, δ = 0.2, ω = 2, ddur = 40. They also 
found, that dvar = 14.5 and θ = 0.33 were suitable parameter values for 
the hourly resolution at their selected test catchment. Since the E-DMCA 
and SM methods identify not only floods but also runoff events, the 
present authors aimed to find a parameter set for the SBES method 
which also yields runoff events. This was achieved by lowering the value 
of θ to 0.01. The value of η was also reduced to 0.01, since neither 0.25 
nor 0.33 produced acceptable starting points for the runoff events. 

Another modification was made by the present authors regarding the 
identification of the corresponding precipitation. The original script 
appeared to run for hours for one catchment due to the high number of 
fitted linear regressions. Regression fitting is computationally expensive, 
therefore the present authors optimized the script and ran it on a shorter 
section of the data. The results of the optimized script were checked for 
one catchment to ensure the agreement between the results of the 
original and the optimized code. This way, the runtime was reduced 
from days to hours for the 61 catchments examined in this study. 

3.3. Calculating catchment response time for events – DMCA and E- 
DMCA methods 

Giani et al. (2021) successfully applied the DMCA method to directly 
estimate characteristic Tr from rainfall and streamflow observations. As 
they state, this method’s strength is “to find the timescale at which two 
time-series are linked even when they exhibit different frequency 
spectra and are nonlinearly related”. The DMCA-based correlation co-
efficient (ρDMCA [-]) for time-series with length T and applying a window 
length L can be calculated as: 

ρDMCA(L) =
∑T − 0.5(L− 1)

t=0.5(L+1)

(
Rt − R̂t,L

)(
Qt − Q̂t,L

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑T − 0.5(L− 1)
t=0.5(L+1)

(
Rt − R̂t,L

)2∑T − 0.5(L− 1)
t=0.5(L+1)

(
Qt − Q̂t,L

)2
√ with − 1

≤ ρDMCA(L) ≤ 1 (1) 

where Rt and Qt are the cumulative time-series of the rainfall (r) and 
streamflow (q) data, while R̂t,L and Q̂t,L are the centered moving aver-
ages of the cumulative rainfall and streamflow time-series, given as: 

Rt =
∑t

i=1
riQt =

∑t

i=1
qifor t = 1, 2,⋯, T (2-3)  
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R̂t,L =
1
L
∑t+0.5(L− 1)

t− 0.5(L− 1)
Rt Q̂t,L =

1
L
∑t+0.5(L− 1)

t− 0.5(L− 1)
Qt (4-5) 

The rainfall and streamflow time-series must have the same length 
and temporal resolution. This study employed hourly time-series, 
similar to Giani et al. (2021). The window length L must be defined in 
units of time steps (in this case, hours) and must have an odd value since 
a centered moving average is calculated. The value of Tr can be esti-
mated as half of Lmin-1, where Lmin is the window length resulting in the 
minimum value of ρDMCA (ρmin [-]). In order to find this optimum, several 
window lengths need to be applied. The maximum possible value of Tr 
(Tr,max [hr]) can be attributed to the maximum tested window length 
(Lmax [hr]). This Lmax value can be considered as the only parameter of 
this approach. This parameter limits the maximum value of Tr as (Lmax −

1) / 2 = Tr,max. 
The numerator in Equation (1) represents the bivariate fluctuation of 

streamflow and runoff, while the denominator contains the squared 
fluctuations of the rainfall and streamflow time-series. The sign of the 
rainfall and streamflow fluctuations carries physical meaning: the center 
of mass is preceded by a negative fluctuation and followed by a positive 
one (Giani et al., 2021). Therefore, ρmin is achieved when the value of L is 
closest to the time between the centers of masses. A detailed, step-by- 
step introduction to the DMCA method is presented by Giani et al. 
(2021), along with a detailed description of the calculation steps’ 
interpretation. 

The proposed E-DMCA method takes advantage of the fluctuations 
mentioned above, by introducing a new parameter, pth [-]. The DMCA 
method applied to the whole time-series results in a single, characteristic 
value of Tr (Tr,char). Using the time window (Lmin) attributed to this 
characteristic Tr and relying on the cumulative rainfall and streamflow 
time-series’ fluctuations, rainfall-runoff events are expected to be 
located at sections having positive rainfall and negative streamflow 
fluctuations. These sections can be found by applying a threshold value 
(pth), as a new parameter. Based on this hypothesis, the steps of event 
selection and Tr calculation were defined as follows:  

i) Estimating the characteristic Tr and the corresponding value of 
Lmin using the DMCA method of Giani et al. (2021) on the entire 
time-series.  

ii) Normalizing the rainfall and streamflow fluctuation time-series 
[Nrain(Lmin) and Nflow(Lmin)] attributed to Lmin. The normaliza-
tion of the fluctuation time-series is only performed to facilitate 
data comparison and visualization, but it does not affect the result 
of the event selection.  

iii) Finding the time instants in the normalized fluctuation time- 
series, where rainfall fluctuations are higher than 1 – pth and 
streamflow fluctuations are lower than the pth threshold value. 
The threshold value is defined as a percentile of the entire 
normalized fluctuation time-series Nflow(Lmin) and Nrain(Lmin). The 
selection criteria can be written as: {p[Nrain(Lmin)] > 1-pth} ^ {p 
[Nflow(Lmin)] < pth}, where p [-] represents percentiles. The time 
instants meeting the criteria form continuous sections of 
consecutive time steps.  

iv) Selecting the first time instant (i.e., the beginning of the events) 
for each continuous section identified in step iii).  

v) Calculating the value of Tr for each event (Tr,event) with the DMCA 
method. The time window for each event starts Tr,max hours 
before the first time instant and ends two times Tr,max hours after 
the first time instant.  

vi) Excluding ill-conditioned events with ρmin ≥ 0 and with Tr,event =

Tr,max. (See further explanation below.) 
vii) Removing outliers from the final set of event-based values. Out-

liers were defined as elements in excess of triple the scaled me-
dian absolute deviation from the median of the original set of 
values. 

The interpretation of these steps is visualized in Fig. 3 for sections of 
real data. Step i) utilizes the DMCA method presented by Giani et al. 
(2021). Steps ii)-iv) build on the outcome (Tr,char or Lmin) of step i) to 
perform the event selection. Since both the original and normalized 
fluctuation time-series follow a symmetric distribution, the event se-
lection threshold (pth) was defined as percentiles in step iii). This way, 
the event selection criteria are adjusted to the characteristics of the 
rainfall and streamflow time-series for each catchment. Step iii) results 
in continuous sections where the threshold criteria are met. In step iv), 
every first time instant of these sections will be selected as the start of the 
event. The time windows had to be fitted to each starting point in the 
next step. These time windows specify the beginning and endpoints of 
the time-periods for which the DMCA method is applied again, sepa-
rately for every event. The length of the time window was selected based 
on the rule of thumb applied in the unit hydrograph method (see step v) 
above), since the base of the triangular unit response hydrograph is often 
described in relation to Tr (FEH, Institute of Hydrology, 1999). This way, 
a set of Tr values (Tr,event) can be retrieved from the whole time-series for 
each watershed. Please note that in steps i)-v) the event selection and Tr 
estimation for every event is performed. 

In step vi) and vii), some of the inadequate values are removed from 
Tr,event. Ill-conditioned events consist of rainfall and runoff time-series 
the DMCA method yields inadequate Tr values with. Events resulting 
in a positive value of ρmin are not necessarily unacceptable, but it was 
found that a positive coefficient indicates ill-conditioned events in most 
cases. Events resulting in Tr values equivalent of Tr,max may also be ill- 
conditioned or have longer Tr than Tr,max. Therefore, these values 
were also excluded. An example of ρmin ≥ 0 and another for Tr,event =

Tr,max can be seen in Fig. 3, along with an example of a well-conditioned 
event. The ratio of ill-conditioned events ranged between 0 and 3.18 % 
and 1.93–2.96 %, respectively. The filtered outliers made 0–1.16 % of 
the initially selected events. The strengths and weaknesses of the pre-
sented event selection method are discussed in more detail in Section 
4.1. The Matlab function of the E-DMCA method (Nagy, 2022) is 
available at https://doi.org/10.5281/zenodo.6822134. 

3.4. Sensitivity analysis and goodness-of-fit measures 

The E-DMCA method has two parameters a) the maximum value of Tr 
[Tr,max = (Lmax − 1) / 2], and; b) the threshold value of fluctuations 
identifying events (pth). A sensitivity analysis was carried out to assess 
the robustness of the proposed method. During this analysis, a wide 
range of the two parameters were tested (see Section 4.3 for results). The 
consistency of the sensitivity analysis was ensured by a twofold cross- 
validation approach. The sensitivity analysis was performed for two 
subsets of the catchments of equal number. The catchments were sorted 
into the subsets randomly. The goodness-of-fit was measured between 
the median of Tr,event, and the median of definition f), as the DMCA 
method tends to match the maxima of the rainfall and streamflow time- 
series (for details, see Section 5.2). 

During the sensitivity analysis and comparison of the results of event 
selection methods, the following goodness-of-fit measures were applied: 
Pearson correlation coefficient (r [-]), Nash-Sutcliffe efficiency (NSE [-]) 
(Nash & Sutcliffe, 1970), root-mean-squared error (RMSE [hr]) and the 
sum of relative differences (ΔTr [%]). These were calculated as: 

r =

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2∑n
i=1(yi − y)2

√ (6)  

NSE = 1 −
∑n

i=1(yi − xi)
2

∑n
i=1(xi − x)2 (7)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − xi)
2

n

√

(8) 
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ΔTr =

∑n
i=1yi − xi
∑n

i=1xi
100 (9) 

where xi is the value of Tr yielded by the baseline (SM or SBES) 
method, yi is the value of Tr resulting from the E-DMCA method, and n is 
the number of observations. The value of r can range from − 1 to 1, 
meaning perfect inverse linear and linear relationship, respectively. The 
value of NSE shows the model’s capability of yielding a better estimate 
than the mean of the observed values, and its value can range from -∞ to 
1. If NSE is in the range of 0–1, the model provides a better estimation 
than the observed values’ mean. An NSE value of 1 represents a perfect 
fit. The RMSE value is zero for a perfect fit, and the lower the value the 
better is the fit. The value of ΔTr defines the fit’s estimation error in 
percentage relative to the observed values. A negative ΔTr implies a 
general underestimation of the observed values. A value of 0 does not 
represent a perfect fit, it only means that there is no significant under- or 
overestimation. 

4. Results 

4.1. Comparison of event characteristics from different selection methods 

The three methods selected different sets of events and as a result the 
statistical characteristics of various parameters may considerably differ. 
Although, the three methods cannot be compared objectively based on 
the number of events, we provide the number of selected events per 
catchment per year for each event selection method in Supplementary 
Material S2, Section 3. The largest number of events is obtained by the E- 
DMCA method, followed by the SBES, and the SM, respectively. The 
lowest number by SM is due to the discharge threshold and the visual 
inspection when any disturbed runoff event was rejected (step i. and ii. 
in Section 3.1). 

In order to compare the event selection capability of the E-DMCA 
approach, the runoff ratio (α [-]) and the value of Tr was assessed for 
every event selected by the SM, E-DMCA, and SBES methods. The runoff 
ratio was calculated as the ratio of the total runoff and the total pre-
cipitation, while Tr was calculated using the DMCA method for each 
subsection of rainfall and runoff data. Figs. 4 and 5 present the different 
percentiles of the calculated Tr and α values for every selected event. 
Sections 1 and 2 in Supplementary Material S2 includes more details 
separately for every percentile, including plots for all events and only 
matched events. 

The value of Tr demonstrates a stronger correlation between the re-
sults of the E-DMCA and the SBES methods than the E-DMCA and the SM 
methods. The middle range of the values (p = 0.25, 0.5, and 0.75) is 
captured well, while the low and high values (p = 0.1 and 0.9) less so. 
Both E-DMCA and SBES methods result in slightly smaller Tr values than 
the SM one. In contrast, E-DMCA shows considerably less scatter than 
SBES when they are compared to SM. Considering the α values, the best 
agreement is obtained between SM and E-DMCA. Not only the variation 
of the median values from the SBES method (σ0.5 = 3.20•10− 3) is higher 
than that either from the E-DMCA (σ0.5 = 6.04•10− 4) or SM (σ0.5 =

7.59•10− 4) method, but also the deviation from the 1:1 line. The SBES 
method shows remarkable under- and overestimations in the range of 
0.02–0.09 against both the SM and E-DMCA methods. We highlight that 
the runoff ratio is explicitly checked only in the case of the expert-based 
SM method during the event selection procedure. The median values of α 
yielded by the SBES method are higher on average than of the E-DMCA 
method. The interpretation of these results is given in Section 5.1. 

Fig. 3. Examples for a well-conditioned event (blue), and the two types of ill-conditioned events ρmin ≥ 0 (red) and Tr,event = Tr,max (black) which yield inadequate Tr 
values with the E-DMCA method. a) Streamflow (Q) and rainfall (P) time-series with the first time instants of sections. b) The normalized fluctuation time-series of 
rainfall and precipitation (Nrain, Nflow) with the time instants and event windows. c) DMCA-based correlation coefficient related to window length [ρDMCA(L)]. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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4.2. Comparison of the catchment response time values resulting from 
different methods 

The SM event selection resulted in eight different Tr values – ac-
cording to the definitions shown in Fig. 2 – for the 61 catchments’ 2152 

events. Another set of event-based values (Tr,event) for each catchment 
was provided by the E-DMCA method, while the original DMCA method 
gave a characteristic Tr (Tr,char) value for the whole time-series. The final 
results were obtained by employing Tr,max = 150 h and pth = 0.05, based 
on the sensitivity analysis results (see Section 4.3). The difference 

Fig. 4. Comparison of the different percentiles (p = 0.1, 0.25, 0.5, 0.75, 0.9) of Tr resulting from the E-DMCA (Tr,E-DMCA) against those from the SBES (Tr,SBES) and SM 
(Tr,SM) methods. 

Fig. 5. Comparison of the different percentiles (p = 0.1, 0.25, 0.5, 0.75, 0.9) of α resulting from the E-DMCA (αE-DMCA) against those from the SBES (αSBES) and SM 
(αSM) methods. 

Fig. 6. a) Medians (filled circles) of the event-based values (Tr,median) from the E-DMCA method plotted against the characteristic Tr values (Tr,char) by the DMCA 
method. b) The difference between Tr,char and Tr,median expressed in percentage for each watershed. Catchments with relative error higher than 40% are marked in red. 
The whiskers span the 0.05–0.95 percentile range. Catchment IDs correspond to the ones presented in Supplementary Material S1. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this article.) 
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between the characteristic value (Tr,char) obtained by the DMCA method 
and the median of the values (Tr,median) resulting from the E-DMCA 
method is presented in Fig. 6. 

The characteristic Tr shows good agreement with Tr,median having a 
Pearson correlation of 0.967 and Nash-Sutcliffe coefficient of 0.935. The 
difference is equal to or higher than 40 % in six watersheds (shown by 
red markers), which is ~ 10 % of the total number of catchments. The 
difference is only 1–3 h in the case of four watersheds (14, 16, 29, 55), 
which have a smaller area and, therefore, a smaller Tr. In one case (37), 
the flow may be distorted by measurement errors yielding irregular Nflow 
curves. In this case, the E-DMCA method captures a fewer number of 
events than the SM method. The proposed method appears to capture a 
higher number of the smaller peaks and fewer large ones at catchment 7, 
therefore yields a shorter response time than the characteristic Tr. 
Nevertheless, 85 % of the watersheds has an error<20 %. 

In case of the SM event selection, all eight definitions (see Fig. 2) 
were applied for each event. The median values from each definition 
were compared to the medians (Tr,median) of the E-DMCA method both 
considering every selected events and only those selected by both 
methods in Fig. 7. The goodness-of-fit measures described in Section 3.4 
were also calculated (Table 3). A figure (Figure S4) similar to Fig. 7 is 
provided in Supplementary Material S2 comparing the values yielded by 
the combination of the SBES and DMCA methods and the values 
resulting from the different definitions. 

The median of the eight different Tr definitions gave diverse results. 
The two traditional definitions of Tc [a) and b)] resulted in the highest 
values, followed by the medians of Te and Tp [definitions g) and h)]. The 
remaining four definitions yielded similar values. From these four, 
definitions e) and d) (standing for TL), and definitions f) and c) (the two 
unconventional definitions of Tc) expressed the best agreement with the 
values of Tr,median, respectively. The match is the closest to the 1:1 line in 
case of definition f), which is the time elapsed between the peaks of total 
rainfall and streamflow. The four best-performing definitions resulted in 
NSE values higher than 0.8 and RMSE values under 6.2 h. ΔTr shows 
negative values in every case, which means that Tr,median somewhat 
underestimates the values resulting from the different definitions. This 

estimation error ranges two orders of magnitude, and the smallest value 
is over − 1%. The absolute value of ΔTr is under 2 % for definitions d)-f). 

As the E-DMCA procedure appeared to capture the median of defi-
nition f), it is instructive to compare the distributions of the event-based 
values resulting from the SM and the proposed method for this defini-
tion. Therefore, the values representing the p = 0.1, 0.25, 0.5, 0.75 and 
0.9 percentiles (p = 0.5 being the median) were compared. The plots of 
the five percentiles can be seen in Fig. 8. The goodness-of-fit measures 
for each percentile can be found in Table 4. For a better comparison, the 
different percentiles are also plotted for the events selected by both 
methods in Fig. 8. In Table 4, the corresponding goodness-of-fit mea-
sures are also provided in parentheses. 

The different percentiles of the E-DMCA method gave satisfactory 
results overall. The percentile plot is generally symmetric along the 1:1 
line and the length of the whiskers are similar in most cases (see Fig. 8). 
The value of NSE is 0.708 on average, while the value of r exceeds 0.875 
in every case. RMSE shows a considerable increase as the estimated 
percentile increases. The increase of error is expected since the range of 
the estimated values also increases. However, the relative error varies: 
the p = 0.1 and 0.75 percentiles are over-, while the other percentiles are 
underestimated. The largest relative error is somewhat higher than 10 % 
in the case of the largest values (p = 0.9). As it appears in Fig. 8, the E- 
DMCA values tend to overestimate the larger values and underestimate 
the lower ones in case of the higher percentiles (p = 0.75 and 0.9). 

4.3. Sensitivity analysis 

The results of the sensitivity analysis introduced in Section 3.4 are 
presented in Fig. 9. The event selection was performed using the 
parameter value ranges of pth = 0, 0.01, 0.025, 0.05, 0.1, 0.25, 0.4, 0.5 
and Tr,max values from 50 to 350 hr, incremented by 25 hr. Note that pth 
= 0 results in the selection of no events, and pth = 0.5 results in selecting 
every possible event due to the symmetry of the rainfall and flow fluc-
tuation distributions. Tr,max = 0 hr also results in the selection of no 
events. Therefore, the lowest value of the tested range was set to 50 hr, 
while the highest value was set to 350 hr. The optimal combination of 

Fig. 7. Median values of the value set (Tr,median) resulting from the E-DMCA method (y-axis) compared to the median of the eight different Tr definitions [Tr,def. a)-h)] 
from the SM method (x-axis). The medians are plotted for every selected events (All) and for those selected by both methods (Match). The definitions and the color 
codes correspond to those in Fig. 2. 
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the two parameters (Tr,max, and pth) was identified for all goodness-of-fit 
measures introduced in Section 3.4. The goodness-of-fit measures were 
calculated between the median of the Tr values yielded by the proposed 
method (Tr,median) and the median of the values resulting from definition 
f) [Tr,def. f)]. The number of selected events per watershed per year was 
also calculated. 

The sensitivity analysis demonstrates that the number of events 
selected with the E-DMCA approach only depends on the value of the 
threshold pth [Fig. 9e)]. This was expected since the event selection relies 
on the fluctuations calculated using the characteristic Tr yielded by the 
DMCA method, which is not changing if the Tr’s value is higher than the 
characteristic Tr. However, the number of events selected increases 

exponentially as the value of the threshold increases. A number of 20 
events per watershed per year is reached near the value of pth = 0.05, 
which can be considered a high value based on other studies (see 
Table 1). The value of Tr,max has more effect on the set of event-based 
values, as it limits the upper part of the Tr,event’s distribution. This ef-
fect becomes clearly visible when the value of Tr,max goes under 150 h, as 
all the goodness-of-fit measures show a sharp increase/decline when 
Tr,max < 150 hr and pth < 0.05. 

The different goodness-of-fit measures show somewhat different 
distributions for the two sets of catchments (see Section 3.4). The range 
of optimal Tr,max goes from 75 to 150 h, and the value of optimal pth is 
between 0.025 and 0.1. The optimum values match in the case of NSE 

Table 3 
Goodness-of-fit measures of Tr,median compared to the medians of the eight definitions [Tr,def. a)-h)] and the characteristic Tr (Tr,char). Values based on events selected by 
both the E-DMCA and SM methods are shown in parentheses.   

Tr,def. a) Tr,def. b) Tr,def. c) Tr,def. d) Tr,def. e) Tr,def. f) Tr,def. g) Tr,def. h) Tr,char 

r [-] 0.906 (0.820) 0.911 (0.861) 0.937 (0.855) 0.940 (0.937) 0.942 (0.931) 0.938 (0.929) 0.886 (0.917) 0.896 (0.904) 0.967 
NSE [-] − 0.427 (-0.233) − 0.468 (-0.246) 0.802 (0.603) 0.880 (0.750) 0.883 (0.746) 0.878 (0.755) 0.706 (0.817) 0.076 (0.353) 0.935 
RMSE [hr] 31.7 (29.5) 36.2 (33.8) 6.13 (7.94) 4.88 (6.03) 4.88 (6.17) 4.94 (6.10) 8.92 (7.13) 16.0 (13.8) 2.87 
ΔTr [%] − 63.8 (-58.4) − 66.4 (-61.7) − 18.7 (-5.96) − 1.77 (2.21) − 0.286 (1.52) − 1.67 (1.03) − 20.1 (-13.0) − 47.0 (-40.1) 0  

Fig. 8. Comparison of the different percentiles (p = 0.1, 0.25, 0.5, 0.75, 0.9) of Tr resulting from the E-DMCA method against those from the SM method using 
definition f). Percentiles based on all identified events are in red (All), while those from the same set of events (a subset of the former) among the two methods are in 
blue (Match). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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and RMSE [Fig. 9a & 9d]. ΔTr yielded slightly different optima, while r 
resulted in considerably different optima [Fig. 9b & 9c]. However, r can 
be misleading since its value denotes a linear relationship and does not 
give information on the estimation error’s extent. Consequently, the 
strongest linear relation between the modeled and estimated values does 
not necessarily coincide with the smallest estimation error. Based on the 
sensitivity analysis results displayed in Fig. 9, application of the 
parameter values Tr,max = 150 h, and p = 0.05 is considered well justi-
fied to run the E-DMCA method for the whole dataset. 

5. Discussion 

5.1. Comparison of event characteristics from different selection methods 

Fig. 10 provides examples for the results of the event selection from 
the three different methods. Fig. 10a) demonstrates that the SM method 
is the most restrictive as it missed many of the events selected by the 
other two methods. Fig. 10b) provides examples for overlapping time 
windows in the case of the E-DMCA method. Overlaps between events 
also occur with the SBES method, but rarely. Fig. 10a) and 10b) repre-
sent two catchments with relatively short and long response times. 

At some of the catchments, the SBES method failed to choose the 
largest observed flood events [Fig. 10c)], but in a few cases (5.5 % of the 
years) it selected a higher number of events than the other two methods 
[Fig. 10d)]. This suggest that the applied parameters of the SBES method 
should be calibrated individually for each catchment. The strongly 
variable performance of the three applied methods can be best observed 
in March and April of Fig. 10e). Fig. 10f)-h) provide further examples for 
the various performance. The E-DMCA method was able to select more 
events than the SBES or both methods [Fig. 10f) & g), respectively]. 
Based on the results, selecting a few events by all three methods in one 
year, as in Fig. 10h), can be considered a relatively good match among 
the methods at this catchment. 

The observed differences may stem from the different selection 
strategies of the applied methods. The general aim of the SM method was 
to provide a set of hydrologically reliable events through a strict selec-
tion procedure. This included the visual screening of the runoff events to 

Table 4 
Goodness-of-fit measures attributed to the different percentiles (p = 0.1, 0.25, 
0.5, 0.75, 0.9) of Tr using the E-DMCA method and SM method with definition f). 
Values based on events selected by both methods are shown in parentheses.   

Tr,def. f)-Tr,event 

p [-] 0.1 0.25 0.5 0.75 0.9 

r [-] 0.875 
(0.920) 

0.900 
(0.939) 

0.938 
(0.900) 

0.887 
(0.896) 

0.900 
(0.795) 

NSE [-] 0.712 
(0.746) 

0.793 
(0.757) 

0.878 
(0.641) 

0.463 
(0.702) 

0.692 
(0.282) 

RMSE 
[hr] 

3.32 (2.74) 3.62 (3.06) 4.94 (4.82) 12.0 (5.60) 12.9 (9.68) 

ΔTr [%] 7.00 (10.3) − 1.41 
(2.31) 

− 1.67 
(4.21) 

5.78 (9.08) − 10.5 
(8.15)  

Fig. 9. Results of the sensitivity analysis in terms of the value of a) RMSE, b) ΔTr, c) r, d) NSE, and e) the number of events (Nr) per watershed per year for catchment 
set #1 (left) and set #2 (right). The two subsets of catchments were created to perform a twofold cross-validation. They have the same size and were created by 
sorting the catchments into the subsets randomly. 
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Fig. 10. Examples for event selection performance of the three applied methods. a) Catchment with short response time (Tr,median = 6 h) where SM fails to select 
events. b) Catchment with long response time (Tr,median = 52 h) where the E-DMCA method identifies overlapping time windows. c) Weak performance of the SBES 
method. d) The SBES method outperforms the SM and the E-DMCA methods. e) Varying performance of the three methods. f) Good match among the three methods. 
g) Good match between the SM and the E-DMCA methods. h) E-DMCA method selects more events than the SM and SBES methods. Catchment IDs correspond to 
those presented in Supplementary Material S1. 
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provide floods with a clear rising and recession limb lacking missing/ 
interpolated values and measurement error, and the removal of events 
with less precipitation than direct runoff (see Section 3.1 for more de-
tails). This lead to the exclusion of a large proportion (61.5 %) of the 
events, but this does not mean that these excluded events were falsely 
identified by the other two methods. Furthermore, the comparison of all 
selected events with the matched ones (Figs. 7 and 8) showed that the 
exclusion of these events does not result in a bias. In other words, a less 
strict selection strategy would lead to same results and the proposed 
method can provide a great number of reliable events for other hydro-
logical analyses. 

The SBES method relies on the variance of the runoff time-series 
which varies at different temporal resolutions. Since the SBES method 
was developed using daily time-series, the occasionally poor perfor-
mance of the SBES method presented in this paper using hourly time- 
series could be further improved through a more extensive calibration 
of the method’s numerous parameters. This means a re-calibration of the 
parameters for each catchment. Even though the runoff event selection 
could be likely enhanced as mentioned before, the runoff ratios would 
not necessarily improve since the SBES method does not account for the 
amount of rainfall attributed to the runoff events (in contrast to the E- 
DMCA and SM methods). 

The E-DMCA method fails to identify some of the events due to two 
main reasons: a) the event is identified, but it is ill-conditioned (see 
Section 3.3), or; b) the corresponding precipitation arrives too early/late 
or is quantitatively insufficient (i.e., the selection criteria introduced in 
Section 3.3 is not fulfilled). Despite these cases, the E-DMCA method 
appeared to perform well, as discussed in the following sections. 

Regarding the runoff ratios, the SM and E-DMCA values showed the 
strongest correlation, while the values from the SBES method showed 
little agreement with the values yielded by the other two (SM and E- 
DMCA) methods. The values were also plotted using every selected 
event and only for the events selected by the two compared methods (see 
Supplementary Material S2, Sections 1 and 2). The runoff ratios result-
ing from the SBES method show stronger correlation with the values 
yielded by the SM method when only the matching events are compared. 
The difference between examining all events and only the matching 
events is not notable when comparing the E-DMCA and SM methods. 
This means to us that in contrast to the E-DMCA method, the further 
selected events by the SBES method may not be reliable and a visual 
inspection would be necessary. This is a clear disadvantage in the case of 
an automated method. The SBES method’s values generally over-
estimate the runoff ratios resulting from the E-DMCA method (see 
Fig. 5), and the overestimation grows more significant as the percentile 
decreases. 

The above mentioned discrepancies can be attributed again to the 
selection strategies of the different methods. The SM method employs 
several strict and arbitrary criteria in order to produce a smaller but 
hydrologically reliable set of rainfall-runoff events. Since the SM method 
requires the separation of base flow and effective precipitation, leading 
to the exclusion of events with less precipitation than direct runoff, its 
results can be considered the most reliable. An important aspect of the 
SBES method is that it does not consider the volume of the precipitation, 
therefore it does not ensure that the amount of the attributed rainfall is 
sufficient to produce the identified runoff. This could lead to the larger 
differences between the values of the SM and SBES methods when 
comparing every selected event instead of matching events. The E- 
DMCA method builds upon both the rainfall and the runoff fluctuation 
time-series, meaning the method cannot select a runoff event if there is 
no precipitation (or the precipitation is too small to produce fluctuation 
above pth). This may result in the stronger correlation between the SM 
and E-DMCA methods. 

Considering the Tr values resulting from the different methods, the 
SBES and E-DMCA methods exhibit the strongest correlation. In 
contrast, the Tr values yielded by the SM method are somewhat longer 
than the Tr resulting from the other two (SBES and E-DMCA) methods. 

This can be attributed to two main factors. First, the number of matching 
events is very low (0.871 and 1.76 events per catchment per year on 
average) between the SM and the other two methods (for more details, 
see Supplementary Material S2, Section 3). If some of these events are 
not well defined (i.e., the beginning and/or the end of the event is 
mispositioned), the resulting Tr can be easily distorted. Second, the SM 
method defines longer time windows for the events than the other two 
event selection methods. This can lead to longer Tr values after the 
application of the DMCA method. 

Based on the comparative analysis of the α and Tr values, the events 
selected by the proposed E-DMCA method appears to be appropriate. 
When considering the time requirements to evaluate the SM, SBES, and 
E-DMCA methods, they can yield results in days, hours, and minutes, 
respectively. Furthermore, the proposed E-DMCA method employs only 
two parameters, while the SBES method requires nine. These properties 
of the proposed method underline that the E-DMCA method is the most 
efficient tool to assess an event-based set of Tr values from rainfall and 
runoff time-series. A more detailed assessment of additional event 
characteristics (e.g., event duration, ratio of peak discharge to base flow, 
etc.) could highlight further strengths and weaknesses of the examined 
methods. The evaluation of other available event selection methods (see 
Table 1) could reveal further insights of the different approaches of 
event selection. 

5.2. Evaluation of the various catchment response times resulting from the 
SM and E-DMCA methods 

The E-DMCA method yielded satisfactory results in every examined 
aspect. The median of Tr,event matched the characteristic Tr estimated 
with the original method of Giani et al. (2021) quite well (RMSE = 2.87 
hr). Since the DMCA Tr estimation method can only yield integers for 
hourly time-series, the relative error can be high for smaller catchments 
with shorter Tr. Using a shorter time-step for smaller catchments could 
produce a better estimation in these cases. 

Application of the different Tr definitions resulted in theoretically 
plausible relations. Definitions c)-f) gave the best results with only slight 
differences (RMSE = 6.13–4.88 hr). The DMCA method defines the time 
between the centroids of total rainfall and streamflow, but it tends to 
give more weight to higher peaks (Giani et al., 2021). As we tested the 
original DMCA Tr estimation method, we also found that it appears to 
match the peaks of the observed rainfall and runoff time-series in the 
case of multi-peaked events. This is especially true when the rainfall and 
streamflow peak is close to each other, i.e., the last peak of the rainfall 
and the first peak of the streamflow are the largest ones. For this reason, 
we aimed to test the efficiency of the E-DMCA method against definition 
f). However, the relatively small difference in performance among def-
initions c)-f) implies that this choice did not affect the efficiency of the 
proposed method considerably. 

By definition, Tc is calculated based on velocity, while Te is calcu-
lated based on celerity (Beven, 2020). Since celerity is normally higher 
than velocity (Beven, 2020), the value of Tc is expected to be larger than 
the value of Te. In fact, Tc’s value can be considered an upper limit of 
catchment response time (Giani et al., 2021). Even though Giani et al. 
(2021) used definition a) to calculate Tr for the selected events in their 
study, their results showed a 1:1 match between the characteristic Tr 
calculated with the original DMCA method, and the median of the values 
assessed using definition a). However, the results presented in this study 
are more plausible, since the DMCA method should yield a value closer 
to TL by nature, and TL must be shorter, than Tc, based on their 
definitions. 

For a deeper understanding of the connection between the various 
time parameters, we attributed different percentiles of the Tr,event values 
resulting from the E-DMCA method to the median values of definitions 
[a), f), g), and h)]. Fig. 11 displays the value of RMSE in relation to the 
different percentiles of Tr,event(p) along with the best fit for definitions a), 
f), g), and h) for the events selected by both methods. For example, the 
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RMSE is the lowest near p = 0.5 in the case of definition f) since the E- 
DMCA method was optimized to the median of definition f). The char-
acteristic value of Tc can be estimated by picking the maximum of the Tr, 

event values resulting from the E-DMCA approach at a satisfactory level 
(RMSE = 13.1 hr). This is reasonable, since Tc can be considered an 
upper limit of a catchment’s Tr by definition. The median of Tp can also 
be estimated as the p = 0.61 percentile of Tr,event with RMSE = 5.30 hr. 
However, the value of Te was assessed with much lower precision 
(RMSE = 10.0 hr). Nevertheless, the range of these time parameters 
increase in the expected order, namely: Tc > Te > Tp > TL. 

In addition to the work of Giani et al. (2021), the E-DMCA method 
presented in this paper managed to assess different percentiles of the Tr 
distribution at a satisfactory level (RMSE = 3.32–12.9 hr). It cannot be 
undoubtedly decided which event selection method gives more realistic 
results since there is no unified method to collect rainfall-runoff events. 
The SM method involves arbitrary choices, which makes the process less 
objective and unreproducible. The proposed method is more of a sto-
chastic approach, since it collects rainfall-runoff events based on prob-
ability through the parameter pth. This method produces a set of values 
including a higher number of the extremely short and long Tr values, 
which results in the observed differences. However, the E-DMCA 
method is able to capture the variable nature of Tr and yields its distri-
bution in minutes. 

5.3. Sensitivity analysis 

Based on the sensitivity analysis results, the parameters Tr,max = 150 
hr, and pth = 0.05 can be used for similar catchments and identical cli-
matic conditions. The analysis illustrated that it is safer to overestimate 
the value of Tr,max, than to underestimate it, since Tr,max is the upper 
boundary of the event-based set of values. If Tr,max is underestimated it 
leads to a sharp decrease in the performance of the E-DMCA method (see 
Section 4.3, Fig. 9). The estimation error does not vary considerably in 
the range of pth = 0.01–0.05 when Tr,max ≥ 150 hr. The value of Tr,max 
matched the maximum of the values defined using definition f) and 
approximately equals three times the maximum of the characteristic Tr 
values yielded by the original DMCA method. Therefore, we suggest two 
methods to estimate Tr,max: a) assess Tr,max manually from the time-series 
of the largest catchment by finding the longest response; b) perform the 
original DMCA method for long time-series then choose Tr,max equal to 
or greater than the triple of the longest characteristic Tr. To keep the 
number of selected events under an average of 20 events per catchment 
per year, we suggest using a value of pth smaller than 0.05. However, the 
number of selected events can strongly vary across different climatic 
regions, applied methods and criteria (see Table 1). Therefore, the 
values of pth can be adjusted to the specific conditions and requirements. 

The parameter values suggested above could be used for similar 

catchments, making the evaluation of the event selection externally 
dispensable. However, the method should be tested on a larger, more 
variable set of catchments in order to extend the applicability of the E- 
DMCA method and assess the robustness of the two parameters in more 
detail. The SM method could be performed more sufficiently using only 
definition f) for a larger dataset since the separation of effective rainfall 
and direct runoff is not necessary in this case. 

6. Conclusions 

The E-DMCA method presented in this study was able to select 
rainfall-runoff events to estimate the range of possible Tr values in the 
case of 61 medium-sized Hungarian catchments. The following conclu-
sions can be drawn from the performed analysis:  

- The E-DMCA method is capable of selecting events from long time- 
series and yield an event-based set of Tr values (Tr,event) in an auto-
mated fashion, thus effectively obliterating days of work normally 
required to perform a non-automated approach.  

- Based on the results of the sensitivity analysis, an optimal range/ 
value was identified for the two parameters (pth and Tr,max) needed to 
perform the presented method (see Section 3.3). The range for pth is 
0.01–0.05, while the value of Tr,max can be estimated as triple the 
maximum of the characteristic Tr values resulting from the applica-
tion of the original DMCA method on long time-series. 

- Compared to the values resulting from the different graphical defi-
nitions, the Tr values of the new method are the closest to the time 
elapsed between the peaks of the total rainfall and runoff. In addi-
tion, the characteristic value of Tc can be estimated as the maximum 
of the event-based set of values (Tr,event) yielded by the E-DMCA 
method.  

- The application of the event selection method of Fischer et al. (2021) 
highlighted that the rainfall-runoff events identified by the E-DMCA 
method are hydrologically reliable considering rainfall-runoff ratios. 
This is due to the fact that the E-DMCA method cannot select a runoff 
event if there is no sufficient preceding precipitation, while the 
method of Fischer et al. (2021) does not consider the amount of 
rainfall.  

- It was also demonstrated that the proposed method is easier to 
implement as it has only two parameters instead of nine. This is 
especially true at the hourly temporal resolution, since the runtime of 
the E-DMCA method is considerably shorter. The added value of the 
proposed method is that it yields a range of physically possible values 
(instead of a characteristic value per watershed) in one step and 
within minutes. This is an important step toward future imple-
mentation of modeling non-linear and stochastic catchment behavior 
in everyday engineering/hydrological applications. 

Fig. 11. Estimating the median of definition a), f), g) and h) by recalibrating the corresponding percentiles (p) of Tr,event. The secondary (blue) x-axis shows the 
percentile (p), while the secondary (blue) y-axis shows the RMSE value between Tr,def. x) and Tr,event(p). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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The proposed E-DMCA method yielded promising results assessed by 
the runoff ratio and catchment response time. The authors intend to 
broaden the analysis of the proposed method in the future with regard to 
the number of i) event selection methods tested; ii) rainfall-runoff event 
characteristics assessed; iii) catchments examined, and; iv) temporal 
resolution investigated, which could further contribute in general to the 
hydrological analysis and modeling of rainfall-runoff events. 
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Nagy, E.D., Szilágyi, J., 2021. Revision of Wisnovszky’s equation by a comprehensive 
analysis of measured time of concentration and catchment morphological parameter 
values (in Hungarian). Hungarian J. Hydrol. 101 (1), 19–32. http://www.hidrologia. 
hu/mht/letoltes/HK2021_01_v4.pdf.  

Nagy, E.D., Torma, P., Bene, K., 2016. Comparing Methods for Computing the Time of 
Concentration in a Medium-Sized Hungarian Catchment. Slovak J. Civ. Eng. 24 (4), 
8–14. https://doi.org/10.1515/sjce-2016-0017. 

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I 
– A discussion of principles. J. Hydrol. 10 (3), 282–290. https://doi.org/10.1016/ 
0022-1694(70)90255-6. 

Nathan, R.J., McMahon, T.A., 1990. Evaluation of automated techniques for base flow 
and recession analyses. Water Resour. Res. 26 (7), 1465–1473. https://doi.org/ 
10.1029/WR026i007p01465. 
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