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ABSTRACT

Most  large-scale  evapotranspiration  (ET)  estimation  methods  require  detailed  information  of  land  use,  land  cover,
and/or soil type on top of various atmospheric measurements. The complementary relationship of evaporation (CR) takes
advantage  of  the  inherent  dynamic  feedback  mechanisms  found  in  the  soil−vegetation−atmosphere  interface  for  its
estimation of ET rates without the need of such biogeophysical data. ET estimates over the conterminous United States by a
new,  globally  calibrated,  static  scaling  (GCR-stat)  of  the  generalized  complementary  relationship  (GCR)  of  evaporation
were  compared  to  similar  estimates  of  an  existing,  calibration-free  version  (GCR-dyn)  of  the  GCR  that  employs  a
temporally varying dynamic scaling. Simplified annual water balances of 327 medium and 18 large watersheds served as
ground-truth  ET  values.  With  long-term  monthly  mean  forcing,  GCR-stat  (also  utilizing  precipitation  measurements)
outperforms GCR-dyn as the latter cannot fully take advantage of its dynamic scaling with such data of reduced temporal
variability.  However,  in  a  continuous  monthly  simulation,  GCR-dyn  is  on  a  par  with  GCR-stat,  and  especially  excels  in
reproducing long-term tendencies in annual catchment ET rates even though it does not require precipitation information.
The  same  GCR-dyn  estimates  were  also  compared  to  similar  estimates  of  eight  other  popular  ET  products  and  they
generally  outperform  all  of  them.  For  this  reason,  a  dynamic  scaling  of  the  GCR  is  recommended  over  a  static  one  for
modeling long-term behavior of terrestrial ET.
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Article Highlights:

•  A temporally variable dynamic scaling of the GCR yields better long-term behavior than a static one.
•  The dynamic scaling accounts for the aridity of the environment in each time step and thus improves land evaporation

estimates.
• The dynamic scaling does not require precipitation information.

 

 
 

1.    Introduction

Land surface evapotranspiration (ET) is a central compon-

ent  in  the  Earth’s  energy,  water,  and  carbon  cycles  (Wang

and  Dickinson,  2012; Fisher  et  al.,  2017).  Accurate  ET
information is therefore essential for a better understanding
of  land−atmosphere  interactions  (Seneviratne  et  al.,  2006)
and  the  biosphere’s  water−carbon  coupling  (Biederman  et
al., 2016; Feng et al., 2016). It also improves drought predic-
tions (Pendergrass et al., 2020) and helps to find answers to
water  resources  sustainability  issues  (Condon et  al.,  2020).
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While  the  globally  distributed eddy-covariance flux towers
have  contributed  significantly  to  our  knowledge  of  ET
across a wide range of ecosystems [see a recent review by Bal-
docchi  (2020)],  the  spatiotemporal  variation  of  global  ET
and its response to the changing climate remains highly uncer-
tain (Mueller et al., 2011; Liu et al., 2016) because the estima-
tion of long-term, spatially resolved ET is yet laden by diffi-
culties  in  parameterizing  the  biophysical  processes  (e.g.,
root  water  uptake,  stomatal  resistance  and  its  response  to
CO2 concentration  changes)  that  control  ET  in  the  current
land surface models (LSMs) (Ukkola et al., 2016; Ma et al.,
2017)  and  remote  sensing  algorithms  (Vinukollu  et  al.,
2011; Velpuri  et  al.,  2013).  In  addition  to  possible  model
structural  errors,  the  uncertainties  in  the  estimated  ET  can
also  arise  from  errors  in  their  gridded  vegetation  (Fang  et
al., 2019) and soil (Zheng and Yang, 2016) parameters due
to the large degree of complexity/heterogeneity found in ter-
restrial  ecosystems.  For  example,  most  LSMs  within
NLDAS-2 (the North American Land Data Assimilation Sys-
tem, phase 2) still  utilize the NOAA normalized difference
vegetation  index  data  developed  by Gutman  and  Ignatov
(1998) on a five-year-mean monthly basis without any interan-
nual variation as input (Xia et  al.,  2012),  failing to reason-
ably  capture  the  impact  of  vegetation  changes  on  ET.
Besides, a recent sensitivity study by Li et al. (2018) demon-
strated  that  the  Noah-MP  LSM  cannot  always  capture  the
effect of spatial changes in forest and/or soil types on the sim-
ulated  ET because  of  the  inherent  uncertainties  in  multiple
land cover and soil texture data.

As an alternative, the complementary relationship (CR)
(Bouchet,  1963)  of  evaporation inherently  accounts  for  the
dynamic  feedback  mechanisms  found  in  the  soil−vegeta-
tion−atmosphere  interface,  and  thus  provides  a  viable,
robust  alternative  for  land  ET  estimation  relying  solely  on
standard atmospheric  forcing without  the  need for  any soil
or  vegetation  data.  The  description  in  the  next  two  para-
graphs of the applied CR method parallels that of Ma and Szil-
agyi (2019).

The  generalized  nonlinear  version  of  the  complement-
ary  relationship  (GCR)  by Brutsaert  (2015) relates  two
scaled variables, x = Ew Ep

−1 and y = E Ep
−1 as 

y = (2− x) x2 . (1)

Here, E (mm d−1) is the actual ET rate, while Ep (mm d−1)
is the potential ET rate, i.e., the ET rate of a plot-sized wet
area in a drying (i.e., not completely wet) environment, typic-
ally specified by the Penman (1948) equation as 

Ep =
∆ (Rn−G)
∆+γ

+
γ fu (e∗− e)
∆+γ

, (2)

∆where  (hPa °C−1) is the slope of the saturation vapor pres-
sure curve at air temperature, T (°C), and γ is the psychromet-
ric  constant  (hPa  °C−1). Rn and G are  net  radiation  at  the
land surface and soil heat flux into the ground, respectively

(the  latter  is  typically  negligible  on  a  daily  or  longer  time
scale),  in water equivalent of mm d−1.  The e* term denotes
the  saturation,  while  e  [=  e*(Td)]  is  the  actual  vapor  pres-
sure of the air [hPa; their difference is called the vapor pres-
sure deficit  (VPD)]. Td is  the dewpoint  temperature,  and fu
is a wind function, often formulated (e.g., Brutsaert, 1982) as 

fu = 0.26(1+0.54u2) , (3)

where u2 (m s−1) is the 2-m horizontal wind speed.
The  so-called  wet-environment  ET  rate, Ew (mm d−1),

of a well-watered land surface having a regionally signific-
ant  areal  extent,  is  specified  by  the Priestley  and  Taylor
(1972) equation: 

Ew = α
∆(T w)
∆(T w)+γ

(Rn−G) . (4)

The dimensionless Priestley−Taylor (PT) coefficient, α,
in Eq. (4), normally attains values in the range of [1.1−1.32]
(Morton, 1983). For large-scale model applications of grid-
ded data, Szilagyi et al.  (2017) proposed a method of find-
ing a value for α, thus avoiding the need for any calibration.

Very  soon  after  the  publication  of  the  GCR, Crago  et
al. (2016) and Szilagyi et al. (2017) introduced a necessary
scaling  into  Eq.  (1)  by  means  of  a  time-varying  wetness
index, w = (Ep,max − Ep)(Ep,max − Ew)−1, to define the dimen-
sionless variable, X, as X = wx, by which Eq. (1) keeps its ori-
ginal nonlinear form, i.e., 

y = (2−X)X2 . (5)

Note  that  Eq.  (4)  in Priestley  and  Taylor  (1972) was
designed with measurements under wet environmental condi-
tions;  therefore,  Δ should  be  evaluated  at  the  wet-environ-
ment air temperature, Tw (°C), instead of the typical drying-
environment  air  temperature, T (Szilagyi  and  Jozsa,  2008;
Szilagyi, 2014). By making use of a mild vertical air temperat-
ure gradient (de Vries, 1959; Szilagyi and Jozsa, 2009; Szil-
agyi,  2014)  observable  in  wet  environments  (as Rn is  con-
sumed predominantly by the latent heat flux at the expense
of  the  sensible  one,  and  water  representing  an  unusually
high latent  heat  of  the vaporization value found in nature),
Tw can be approximated by the wet surface temperature, Tws

(°C). Note that Tws may still be larger than the drying-environ-
ment air temperature, T, when the air is close to saturation,
but the same is not true for Tw, due to the cooling effect of
evaporation. In such cases, the estimated value of Tw should
be capped by the actual air  temperature, T (Szilagyi,  2014;
Szilagyi  and  Jozsa,  2018). Szilagyi  and  Schepers  (2014)
demonstrated that Tws is independent of the size of the wet
area. Thus, Tws can be obtained through iterations from the
Bowen  ratio  (β)  of  the  sensible  and  latent  heat  fluxes
(Bowen,  1926)  when  applied  over  a  small,  plot-sized,  wet
patch (by the necessary assumption that the available energy
for the wet patch is close to that for the drying surface) the
Penman equation is valid for, i.e., 
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β =
Rn−G−Ep

Ep
≈ γ Tws−T

e∗ (Tws)− e∗ (Td)
. (6)

Ep,max in the definition of X within Eq. (5) is the maximum
value  that Ep can  achieve  (under  unchanging  available
energy  for  the  surface)  during  a  complete  dry-out  (i.e.,
when e becomes close to zero) of the environment, i.e., 

Ep,max ≈
∆
(
Tdry

)
(Rn−G)

∆
(
Tdry

)
+γ

+
γ fue∗

(
Tdry

)
∆
(
Tdry

)
+γ
, (7)

in which Tdry (°C) is the so-achieved dry-environment air tem-
perature.  The  latter  can  be  estimated  from the  (isoenthalp)
adiabat of an air layer in contact with the drying surface (Szil-
agyi, 2018a), i.e., 

Tdry = Twb+
e∗ (Twb)
γ

, (8)

where Twb (°C)  is  the  wet-bulb  temperature. Twb can  be
obtained with the help of another iteration of writing out the
Bowen  ratio  for  adiabatic  changes  (e.g., Szilagyi,  2014),
such as 

γ (Twb−T )
e∗ (Twb)− e∗ (Td)

= −1 . (9)

For a graphical illustration of the saturation vapor pres-
sure  curve,  the  different  temperatures  and  the  related  ET
rates  defined,  please  refer  to Ma  and  Szilagyi  (2019).  The
same source also includes a brief description of how the CR
evolved into Eq. (5) over the past 40 years. Additionally, it
plots selected historical CR functions over sample data, and
explains  how  assigning  a  value  of α is  performed  without
resorting to any calibration. A sensitivity analysis of the ET
rates in Eq. (5) to their atmospheric forcing is found in Ma
et al. (2019).

While Brutsaert  et  al.  (2020) realized  the  necessity  of
scaling x with the help of a static aridity index, Crago et al.
(2016), Szilagyi et  al.  (2017), Szilagyi (2018a, b), Szilagyi
and  Jozsa  (2018), Ma  and  Szilagyi  (2019),  and Ma  et  al.
(2019) performed one (and the same one) via a dynamic wet-
ness index. Whereas the wetness index assigns increasing val-
ues  to  wetter  environmental  conditions,  the  aridity  index
does the same to drier  ones. Brutsaert  et  al.  (2020) did not
include  this  dynamic  wetness  index  method  in  their  study,
and therefore the present work was initiated to fill this gap.

2.    Model applications

The  time-varying  (and  thus  dynamic)  scaling  of x
(Crago  et  al.,  2016; Szilagyi  et  al.,  2017)  by  the  wetness
index, w [= (Ep,max − Ep)(Ep,max − Ew)−1], in Eq. (5), is neces-
sary because the GCR of Brutsaert (2015) unrealistically pre-
dicts  near-zero  land  evaporation  only  when Ew in x itself
approaches  zero.  This  is  because  the  potential  evaporation
rate, Ep,  in  the  denominator  of x always  assumes  well-

bounded values due to physical limits on the range of its con-
stituents,  i.e.,  net  radiation,  soil  heat  flux,  air  temperature,
wind speed, and VPD.

An  alternative,  static  scaling  of x by Brutsaert  et  al.
(2020) takes place via an adjustable parameter, αc, that acts
as  the  PT-α value  for  wet  environments.  Since Eq.  (4)  can
also be written as Ew = αEe, where Ee is the equilibrium evap-
oration  rate  of Slatyer  and  Mcllroy  (1961),  thus  the  scaled
variable, X, becomes X = αc Ee Ep

−1 = αcxα−1. The spatially
variable  (but  constant  through  time  at  a  given  location)
value of αc was then related to a long-term aridity index by
Brutsaert et al. (2020), with the latter defined as the ratio of
the mean annual Ep and rain depth,  and globally calibrated
with the help of additional water-balance data, requiring alto-
gether seven parameters in highly nonlinear equations.

Note that the X = wx scaling by Crago et al. (2016) and
Szilagyi et al. (2017) requires only the forcing variables (Rn,
G, T, u2, and VPD), without the need for external precipita-
tion/rain  data,  which  is  significant  as  precipitation  is  pos-
sibly  the  most  uncertain  meteorological  variable  to  predict
in climate models. It is important to mention that w changes
with  each  value  of x,  unlike αc.  As Szilagyi  et  al.  (2017)
demonstrated, a (temporally and spatially) constant value of
the PT α, necessary for x, can be set by the sole use of the for-
cing  variables,  without  resorting  to  additional  water-bal-
ance  data  of  precipitation  and  stream discharge,  thus  mak-
ing the approach calibration-free on a large scale (Szilagyi,
2018b; Ma et al., 2019; Ma and Szilagyi, 2019) where wet-
environmental conditions, necessary for setting the value of
α, can likely be found. Note that setting a constant value of
α is  also  necessary  for Brutsaert  et  al.  (2020) in  order  to
force their spatially variable but temporally constant αc val-
ues  to  reach a  predetermined value of  about  1.3  under  wet
conditions. Despite almost half a century of research follow-
ing publication of the Priestley and Taylor (1972) equation,
there  is  still  no  consensus  about  what  environmental  vari-
ables  (atmospheric,  radiative,  and/or  surficial  properties),
and exactly how their spatial and temporal averaging, influ-
ence the value of the PT α. Until compelling information is
available on these variables, a spatially and temporally con-
stant α value may suffice for modeling purposes.

As was found by Szilagyi (2018b), the value of the PT
α depends slightly on the temporal averaging of the forcing
data,  i.e.,  whether  or  not  the  monthly  values  are  long-term
averages [yielding α = 1.13 (Szilagyi et al., 2017) and 1.15
(Szilagyi, 2018b), respectively]. Therefore, here, it is tested
if such is the case for the globally calibrated model of Brut-
saert et al. (2020). Namely, if its performance is affected by
similar  changes  (from  long-term  mean  monthly  values  to
monthly values) in the input/forcing variables, then some cau-
tion must be exercised during its routine future application,
and recalibration of its seven parameters may be necessary.
Note that besides the different scaling of x, everything is the
same (including data requirements)  in the two GCR model
versions applied here, except that Δ in Ee is evaluated at the
measured air temperature in Brutsaert et al. (2020) while the
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same in Ew (= αEe) is evaluated at an estimated wet-environ-
ment  air  temperature  (Szilagyi  et  al.,  2017)  explained
above.

Both model versions (denoted for brevity by GCR-stat
and GCR-dyn, respectively) were tested over the contermin-
ous  United  States,  first  with  long-term  averages
(1981−2010) of monthly 32-km resolution North American
Regional  Reanalysis  (NARR)  (Mesinger  et  al.,  2006)  radi-
ation and 10-m wind (u10)  data [reduced to 2-m values via
u2 = u10 (2/10)1/7 (Brutsaert, 1982)], as well as with 4.2-km
PRISM  air,  and  dewpoint  temperature  values  (Daly  et  al.,
1994)  followed  by  a  continuous  37-year  simulation  of
monthly  values  over  the  1979−2015  period.  The  NARR
data were resampled to the PRISM grid by the nearest neigh-
bor method. Monthly soil heat fluxes were considered negli-
gible. Evaluation of the model estimates were performed by
water-balance estimates of basin-representative evaporation
rates  (Ewb)  with  the  help  of  United  States  Geological  Sur-
vey  two-  and  six-digit  Hydrologic  Unit  Code  (HUC2  and
HUC6)  basin  (Fig.  1)  discharge  data  (Q)  together  with
basin-averaged PRISM precipitation (P) values as Ewb = P −
Q,  either  on  an  annual  (for  trend  analysis)  or  long-term
mean annual basis. The application of a simplified water bal-
ance is justifiable as soil-moisture and groundwater-storage
changes  are  typically  negligible  over  an  annual  (or  longer)
scale  (Senay  et  al.,  2011)  for  catchments  with  no  signific-
ant trend in the groundwater-table elevation values.

3.    Results and discussion

With the long-term mean monthly data,  GCR-stat  per-
formed slightly but consistently better than GCR-dyn (Fig. 2),
reflected best in the Nash−Sutcliffe model efficiency (NSE)
and  root-mean-square  error  (RMSE)  values,  both  models
providing unbiased, basin-averaged mean annual ET estim-

ates. This outcome is unsurprising, as GCR-stat takes advant-
age of measured precipitation while GCR-dyn does not.

However,  the  picture  changes  when  switching  from
long-term  mean  monthly  forcing  values  to  monthly  values
in  a  continuous  simulation  (Fig.  3).  GCR-dyn,  with  a
slightly changed PT-α value [from 1.13 to 1.15, using the pro-
cedure  of Szilagyi  et  al.  (2017)]  continues  to  produce
unbiased estimates of basin-averaged mean annual evapora-
tion  values.  However,  the  globally  calibrated  GCR-stat
model  underestimates  the  water-balance-derived  values  by
about  10% [i.e.,  relative  bias  (RB) of  −0.09 for  both  basin
scales] and produces reduced interannual variability (see the
horizontally  elongated  “crosses ”  for  the  HUC2  basins  in
Fig.  3)  in  comparison with  GCR-dyn.  Reduced model  per-
formance of GCR-stat is also apparent in the long-term lin-
ear tendencies (obtained as least-squares fitted linear trends)
of the basin-averaged annual evaporation values (Fig. 4) by
being  less  effective  than  GCR-dyn  in  reproducing  the
observed linear trends in the water-balance data.

As  on  a  mean-annual  basis  GCR-stat  performs  better
than (with mean monthly values) or about equal to (in a con-
tinuous  simulation)  GCR-dyn  by  exploiting  precipitation
data  (which  on  the  watershed  scale  naturally  serves  as  an
upper  bound  for  land  ET),  its  weakened  performance  in
trends  can  only  be  explained  by  the  same  reliance  on  the
long-term  means  of  the  precipitation  (and Ep)  rates  in  the
(therefore)  static αc values  that  will  hinder  its  response  to
slow  (decadal)  changes  in  aridity.  The  same  problem  can-
not  occur  in  GCR-dyn,  since  its  wetness  index  (w)  is
updated in each step of calculations.

The current GCR-dyn model has already been shown to
(a) yield correlation coefficient values in excess of 0.9 with
local measurements of latent heat fluxes across diverse cli-
mates  in  China  (Ma  et  al.,  2019)  in  spite  of  large  differ-
ences  in  spatial  representativeness  (i.e.,  grid  resolution  vs
flux measurement footprint), and (b) outperform several popu-

 

 

Fig. 1.  Distribution of the 18 HUC2 (outlined in red) and 334 HUC6 basins
across  the  conterminous  United  States.  Seven  HUC6  basins,  marked  by
green, yielded outlying water-balance-derived evaporation estimates and were
left out of model comparisons.
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lar  large-scale  ET  products  over  the  conterminous  United
States  (Ma  and  Szilagyi,  2019).  These  products  include
three LSMs—namely, Noah (Chen and Dudhia, 2001), VIC
(Liang et al., 1994), and Mosaic (Koster and Suarez, 1996);
two  reanalysis  products—namely,  NCEP-II  (Kanamitsu  et
al., 2002), and ERA-Interim (Dee et al., 2011); another two
remote-sensing based approaches—namely,  GLEAM (Mir-
alles et al., 2011; Martens et al., 2017) and PML (Zhang et
al.,  2017; Leuning  et  al.,  2008);  and  a  spatially  upscaled
eddy-covariance  measurement  product,  FLUXNET-MTE
(Jung  et  al.,  2011).  In  a  comparison  with  water-balance
data, GCR-dyn turns out to produce even better statistics on
the HUC2 scale than the spatially interpolated eddy-covari-

ance measured ET fluxes (Fig. 5), which is remarkable from
a  calibration-free  approach.  GCR-dyn  especially  excels  in
the  long-term  linear  tendency  estimates  of  the  HUC2  ET
rates,  demonstrated  by Figs.  6 and 7.  As  FLUXNET-MTE
employs several temporally static variables for its spatial inter-
polation  method,  its  ability  to  capture  long-term  trends  is
somewhat  limited  (Jung  et  al.,  2011).  On  the  contrary,  the
dynamic scaling inherent in GCR-dyn automatically adapts
to such trends and identifies them rather accurately.

Among  the  different  popular  large-scale  ET  models,
GCR-dyn  produces  multi-year  mean  annual  ET  rates  clos-
est  in  its  spatial  distribution  to  those  of  FLUXNET-MTE
(Fig. 8), with a spatially averaged ET value almost identical

 

 

Fig.  2.  Regression  plots  of  model  estimates  [ES (a,  c)  from  GCR-dyn; EB (b,  d)  from  GCR-stat)  against  water-balance  (Ewb)
evaporation  rates.  Long-term  mean  (1981−2010)  monthly  values  served  as  model  forcing. α =  1.13  in  GCR-dyn  (a,  c).  NSE:
Nash−Sutcliffe model efficiency; R: linear correlation coefficient; RB: relative bias; RMSE: root-mean-square error (mm); SR: ratio
of standard deviations of the mean annual model and water-balance values.
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(both in its spatial average and standard deviation) to that of
GLEAM (Fig. 8), which is a remote-sensing based approach.
Note  that  all  models  of  the  comparison  (except  GCR-dyn)
rely  on  precipitation  data  as  input,  which  greatly  aids  ET
estimations, as on a regional scale and long-term basis precip-
itation  forms  an  upper  bound  for  terrestrial  ET rates;  plus,
it may drive any required soil-moisture water-balance calcula-
tions.

The  spatial  distribution  of  the  modeled  multi-year  lin-
ear  ET trends is  displayed in Fig.  9.  Again,  GCR-dyn pro-
duces  results  closest  in  spatial  distribution  to  FLUXNET-
MTE  in  terms  of  the  statistically  significant  trends  and  to

GLEAM  in  general.  For  a  more  detailed  discussion  of
model  comparisons  (including  additional  model  descrip-
tions), please refer to Ma and Szilagyi (2019).

In conclusion, it can be stated that the GCR of evapora-
tion (Brutsaert, 2015) is a very effective tool in land ET mod-
eling,  as  it  requires only a few, largely meteorological  for-
cing  variables,  and  avoids  the  need  for  detailed  soil-mois-
ture  and land-cover  information.  Although attractive,  as  its
(altogether seven) parameters have already been globally pre-
calibrated, the GCR model version (GCR-stat) of Brutsaert
et al. (2020) may, however, not perform optimally in estimat-
ing long-term tendencies in basin-wide ET rates. This is par-

 

 

Fig.  3.  Regression  plots  of  model  estimates  [ES (a,  c)  from GCR-dyn; EB (b,  d)  from GCR-stat]  against  water-balance  (Ewb)
evaporation rates. Monthly (1979−2015) values served as model forcing for the continuous simulation of monthly evaporation
rates. α = 1.15 in GCR-dyn (a, c). The vertical and horizontal bars represent the standard deviation of the annual modeled and
water-balance HUC2 values, respectively. The large number of data points hinders a similar plot for the HUC6 values.
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ticularly  the  case  in  comparison  to  an  earlier,  calibration-
free version (GCR-dyn), having no precalibrated parameter
values  but  requiring  that  its  sole,  temporally−and
spatially−constant parameter (i.e., the PT coefficient) be set
using  the  actual  forcing  data  through  a  largely  automated
method, described in Szilagyi et al. (2017). Since in a continu-
ous  monthly  simulation  both  models  performed  about  the
same, while the GCR-dyn produced better long-term tenden-
cies,  a  dynamic scaling of Ew Ep

−1 is  recommended over  a

static one in future applications of the GCR of evaporation.
As has been recommended before (Szilagyi, 2018b; Szil-

agyi  and  Jozsa,  2018; Ma  and  Szilagyi,  2019),  it  is  reiter-
ated  here  that  GCR-dyn,  due  to  its  minimal  data  require-
ment, calibration-free nature and dynamic scaling, may con-
tinue  to  serve  as  a  diagnostic  and  benchmarking  tool  for
more  complex  and  data-intensive  models  of  terrestrial  ET
rates, including calibration/verification (for past values) and
reality  checking  (for  future  scenario  values)  of  the  LSM-

 

 

Fig. 4. Regression plots of the linear trends (1979−2015) in annual modeled [ES (a, c) from GCR-dyn; EB (b, d) from GCR-stat]
and  water-balance  values.  The  vertical  and  horizontal  bars  represent  the  standard  error  in  the  trend-value  estimates  for  the
modeled  and  water-balance  HUC2  values  (a,  b),  respectively.  The  large  number  of  data  points  hinders  a  similar  plot  of  the
HUC6 values (c, d). RMSE is now in mm yr−1.
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Fig. 5.  Regression plots of the HUC2-averaged multiyear mean annual ET rates (Emod) of GCR-dyn (a) and
eight  other  (b−i)  popular  large-scale  ET  models  against  the  simplified  water-balance  (Ewb)  estimates.
Temporal averaging follows the availability of data displayed in parentheses for each product. The length of
the whiskers denotes the standard deviation of the HUC2-basin averaged annual ET values. The long blue line
represents  a  1:1  relationship,  while  the  least-squares  fitted  linear  relationships  are  shown  in  maroon  color
(after Ma and Szilagyi, 2019).

 

 

Fig.  6.  Regression  plots  of  the  linear  trend  values  (mm yr−1)  in  modeled  HUC2-averaged  annual  ET  sums
(Emod)  against  those  in Ewb over  1979−2015.  The  length  of  the  whiskers  denotes  the  standard  error  in  the
estimated  slope  value.  The  long  blue  line  represents  a  1:1  relationship,  while  the  least-squares  fitted  linear
relationships are shown in maroon color (after Ma and Szilagyi, 2019).
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Fig.  7.  Regression  plots  of  the  linear  trend  values  (mm yr−1)  in  GLEAM-,  PML-,  and  FLUXNET-MTE-
modeled  (a−c)  HUC2-averaged  annual  ET  sums  (Emod)  against  those  in Ewb over  the  different  model
periods  (shown  in  parentheses).  For  comparison,  regressions  for  the  GCR-dyn  ET  values  over  the  same
periods  are  also  displayed  (d−f).  The  length  of  the  whiskers  denotes  the  standard  error  in  the  estimated
slope  value.  The  long  blue  line  represents  a  1:1  relationship,  while  the  least-squares  fitted  linear
relationships are shown in maroon color (after Ma and Szilagyi, 2019).

 

 

Fig. 8. Spatial distribution of the multiyear (1979−2015) mean annual ET (mm) rates (Emod) by GCR-dyn and
eight  other  popular  large-scale  ET  models  (a−i)  and  their  spatially  averaged  (j)  values,  plus/minus  standard
deviations (after Ma and Szilagyi, 2019). The 18 HUC2 basins are also outlined.
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predicted ET rates of existing regional and general circula-
tion models.
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