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ABSTRACT

Most large-scale evapotranspiration (ET) estimation methods require detailed information of land use, land cover,
and/or soil type on top of various atmospheric measurements. The complementary relationship of evaporation (CR) takes
advantage of the inherent dynamic feedback mechanisms found in the soil-vegetation—atmosphere interface for its
estimation of ET rates without the need of such biogeophysical data. ET estimates over the conterminous United States by a
new, globally calibrated, static scaling (GCR-stat) of the generalized complementary relationship (GCR) of evaporation
were compared to similar estimates of an existing, calibration-free version (GCR-dyn) of the GCR that employs a
temporally varying dynamic scaling. Simplified annual water balances of 327 medium and 18 large watersheds served as
ground-truth ET values. With long-term monthly mean forcing, GCR-stat (also utilizing precipitation measurements)
outperforms GCR-dyn as the latter cannot fully take advantage of its dynamic scaling with such data of reduced temporal
variability. However, in a continuous monthly simulation, GCR-dyn is on a par with GCR-stat, and especially excels in
reproducing long-term tendencies in annual catchment ET rates even though it does not require precipitation information.
The same GCR-dyn estimates were also compared to similar estimates of eight other popular ET products and they
generally outperform all of them. For this reason, a dynamic scaling of the GCR is recommended over a static one for

modeling long-term behavior of terrestrial ET.
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Article Highlights:

¢ A temporally variable dynamic scaling of the GCR yields better long-term behavior than a static one.

¢ The dynamic scaling accounts for the aridity of the environment in each time step and thus improves land evaporation

estimates.
» The dynamic scaling does not require precipitation information.

1. Introduction

and Dickinson, 2012; Fisher et al., 2017). Accurate ET

information is therefore essential for a better understanding
Land surface evapotranspiration (ET) isacentralcompon-  of Jand—atmosphere interactions (Seneviratne et al., 2006)
ent in the Earth’s energy, water, and carbon cycles (Wang and the biosphere’s water—carbon coupling (Biederman et

al., 2016; Feng et al., 2016). It also improves drought predic-
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While the globally distributed eddy-covariance flux towers
have contributed significantly to our knowledge of ET
across a wide range of ecosystems [see a recent review by Bal-
docchi (2020)], the spatiotemporal variation of global ET
and its response to the changing climate remains highly uncer-
tain (Mueller et al., 2011; Liu et al., 2016) because the estima-
tion of long-term, spatially resolved ET is yet laden by diffi-
culties in parameterizing the biophysical processes (e.g.,
root water uptake, stomatal resistance and its response to
CO, concentration changes) that control ET in the current
land surface models (LSMs) (Ukkola et al., 2016; Ma et al.,
2017) and remote sensing algorithms (Vinukollu et al.,
2011; Velpuri et al., 2013). In addition to possible model
structural errors, the uncertainties in the estimated ET can
also arise from errors in their gridded vegetation (Fang et
al., 2019) and soil (Zheng and Yang, 2016) parameters due
to the large degree of complexity/heterogeneity found in ter-
restrial ecosystems. For example, most LSMs within
NLDAS-2 (the North American Land Data Assimilation Sys-
tem, phase 2) still utilize the NOAA normalized difference
vegetation index data developed by Gutman and Ignatov
(1998) on afive-year-mean monthly basis without any interan-
nual variation as input (Xia et al., 2012), failing to reason-
ably capture the impact of vegetation changes on ET.
Besides, a recent sensitivity study by Li et al. (2018) demon-
strated that the Noah-MP LSM cannot always capture the
effect of spatial changes in forest and/or soil types on the sim-
ulated ET because of the inherent uncertainties in multiple
land cover and soil texture data.

As an alternative, the complementary relationship (CR)
(Bouchet, 1963) of evaporation inherently accounts for the
dynamic feedback mechanisms found in the soil-vegeta-
tion—atmosphere interface, and thus provides a viable,
robust alternative for land ET estimation relying solely on
standard atmospheric forcing without the need for any soil
or vegetation data. The description in the next two para-
graphs of the applied CR method parallels that of Ma and Szil-
agyi (2019).

The generalized nonlinear version of the complement-
ary relationship (GCR) by Brutsaert (2015) relates two
scaled variables, x = E,, E," and y = E E;”! as

y=Q2-xx. (0

Here, E (mm d~') is the actual ET rate, while E, (mm d-')
is the potential ET rate, i.e., the ET rate of a plot-sized wet
area in a drying (i.e., not completely wet) environment, typic-
ally specified by the Penman (1948) equation as

ARy —-G)  yfule"—e)
E, =
P A+y " A+y

) @)

where A (hPa °C-1) is the slope of the saturation vapor pres-
sure curve at air temperature, 7 (°C), and y is the psychromet-
ric constant (hPa °C-1). R, and G are net radiation at the
land surface and soil heat flux into the ground, respectively
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(the latter is typically negligible on a daily or longer time
scale), in water equivalent of mm d-!. The e¢* term denotes
the saturation, while e [= e*(T)] is the actual vapor pres-
sure of the air [hPa; their difference is called the vapor pres-
sure deficit (VPD)]. Ty is the dewpoint temperature, and f,
is a wind function, often formulated (e.g., Brutsaert, 1982) as

£, =0.26(1+0.54u,) , 3)

where u, (m s~!) is the 2-m horizontal wind speed.

The so-called wet-environment ET rate, E,, (mm d-!),
of a well-watered land surface having a regionally signific-
ant areal extent, is specified by the Priestley and Taylor
(1972) equation:

£y =0 AT

—(Im(Rn—G). (4)

The dimensionless Priestley—Taylor (PT) coefficient, o,
in Eq. (4), normally attains values in the range of [1.1-1.32]
(Morton, 1983). For large-scale model applications of grid-
ded data, Szilagyi et al. (2017) proposed a method of find-
ing a value for a, thus avoiding the need for any calibration.

Very soon after the publication of the GCR, Crago et
al. (2016) and Szilagyi et al. (2017) introduced a necessary
scaling into Eq. (1) by means of a time-varying wetness
index, w = (Ey may — Ep)(Ep max — Ew)7!, to define the dimen-
sionless variable, X, as X = wx, by which Eq. (1) keeps its ori-
ginal nonlinear form, i.e.,

y=02-X)X*. Q)

Note that Eq. (4) in Priestley and Taylor (1972) was
designed with measurements under wet environmental condi-
tions; therefore, A should be evaluated at the wet-environ-
ment air temperature, T, (°C), instead of the typical drying-
environment air temperature, 7 (Szilagyi and Jozsa, 2008;
Szilagyi, 2014). By making use of a mild vertical air temperat-
ure gradient (de Vries, 1959; Szilagyi and Jozsa, 2009; Szil-
agyi, 2014) observable in wet environments (as R, is con-
sumed predominantly by the latent heat flux at the expense
of the sensible one, and water representing an unusually
high latent heat of the vaporization value found in nature),
T,, can be approximated by the wet surface temperature, T
(°C). Note that T, may still be larger than the drying-environ-
ment air temperature, 7, when the air is close to saturation,
but the same is not true for T, due to the cooling effect of
evaporation. In such cases, the estimated value of T, should
be capped by the actual air temperature, 7" (Szilagyi, 2014;
Szilagyi and Jozsa, 2018). Szilagyi and Schepers (2014)
demonstrated that T, is independent of the size of the wet
area. Thus, T, can be obtained through iterations from the
Bowen ratio () of the sensible and latent heat fluxes
(Bowen, 1926) when applied over a small, plot-sized, wet
patch (by the necessary assumption that the available energy
for the wet patch is close to that for the drying surface) the
Penman equation is valid for, i.e.,
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E, max in the definition of X within Eq. (5) is the maximum

value that E, can achieve (under unchanging available
energy for the surface) during a complete dry-out (i.e.,
when e becomes close to zero) of the environment, i.e.,

E N A (Tdry) Ry —G) N 7fue* (le‘)’)
p.max A (Tdry) +y A (Tdry> +y >

in which Ty, (°C) is the so-achieved dry-environment air tem-
perature. The latter can be estimated from the (isoenthalp)
adiabat of an air layer in contact with the drying surface (Szil-
agyi, 2018a), i.e.,

()

e* (Twp)
Tdry: wb y > 5 (8)

where Ty, (°C) is the wet-bulb temperature. Ty, can be
obtained with the help of another iteration of writing out the
Bowen ratio for adiabatic changes (e.g., Szilagyi, 2014),
such as

Y(wa - T)
YD)y 9
e* (Twv) —€* (Ta) 2

For a graphical illustration of the saturation vapor pres-
sure curve, the different temperatures and the related ET
rates defined, please refer to Ma and Szilagyi (2019). The
same source also includes a brief description of how the CR
evolved into Eq. (5) over the past 40 years. Additionally, it
plots selected historical CR functions over sample data, and
explains how assigning a value of a is performed without
resorting to any calibration. A sensitivity analysis of the ET
rates in Eq. (5) to their atmospheric forcing is found in Ma
etal. (2019).

While Brutsaert et al. (2020) realized the necessity of
scaling x with the help of a static aridity index, Crago et al.
(2016), Szilagyi et al. (2017), Szilagyi (2018a, b), Szilagyi
and Jozsa (2018), Ma and Szilagyi (2019), and Ma et al.
(2019) performed one (and the same one) via a dynamic wet-
ness index. Whereas the wetness index assigns increasing val-
ues to wetter environmental conditions, the aridity index
does the same to drier ones. Brutsaert et al. (2020) did not
include this dynamic wetness index method in their study,
and therefore the present work was initiated to fill this gap.

2. Model applications

The time-varying (and thus dynamic) scaling of x
(Crago et al., 2016; Szilagyi et al., 2017) by the wetness
index, w [= (Ep max = Ep)(Ep max — Ew)7'1, in Eq. (5), is neces-
sary because the GCR of Brutsaert (2015) unrealistically pre-
dicts near-zero land evaporation only when E, in x itself
approaches zero. This is because the potential evaporation
rate, E,, in the denominator of x always assumes well-

SZILAGYIET AL.

977

bounded values due to physical limits on the range of its con-
stituents, i.e., net radiation, soil heat flux, air temperature,
wind speed, and VPD.

An alternative, static scaling of x by Brutsaert et al.
(2020) takes place via an adjustable parameter, a,, that acts
as the PT-a value for wet environments. Since Eq. (4) can
also be written as E,, = aF,, where E, is the equilibrium evap-
oration rate of Slatyer and Mcllroy (1961), thus the scaled
variable, X, becomes X = o E, E,”! = a.xa~!. The spatially
variable (but constant through time at a given location)
value of o, was then related to a long-term aridity index by
Brutsaert et al. (2020), with the latter defined as the ratio of
the mean annual E, and rain depth, and globally calibrated
with the help of additional water-balance data, requiring alto-
gether seven parameters in highly nonlinear equations.

Note that the X = wx scaling by Crago et al. (2016) and
Szilagyi et al. (2017) requires only the forcing variables (R,
G, T, u,, and VPD), without the need for external precipita-
tion/rain data, which is significant as precipitation is pos-
sibly the most uncertain meteorological variable to predict
in climate models. It is important to mention that w changes
with each value of x, unlike a.. As Szilagyi et al. (2017)
demonstrated, a (temporally and spatially) constant value of
the PT a, necessary for x, can be set by the sole use of the for-
cing variables, without resorting to additional water-bal-
ance data of precipitation and stream discharge, thus mak-
ing the approach calibration-free on a large scale (Szilagyi,
2018b; Ma et al., 2019; Ma and Szilagyi, 2019) where wet-
environmental conditions, necessary for setting the value of
a, can likely be found. Note that setting a constant value of
a is also necessary for Brutsaert et al. (2020) in order to
force their spatially variable but temporally constant o, val-
ues to reach a predetermined value of about 1.3 under wet
conditions. Despite almost half a century of research follow-
ing publication of the Priestley and Taylor (1972) equation,
there is still no consensus about what environmental vari-
ables (atmospheric, radiative, and/or surficial properties),
and exactly how their spatial and temporal averaging, influ-
ence the value of the PT a. Until compelling information is
available on these variables, a spatially and temporally con-
stant a value may suffice for modeling purposes.

As was found by Szilagyi (2018b), the value of the PT
o depends slightly on the temporal averaging of the forcing
data, i.e., whether or not the monthly values are long-term
averages [yielding o = 1.13 (Szilagyi et al., 2017) and 1.15
(Szilagyi, 2018b), respectively]. Therefore, here, it is tested
if such is the case for the globally calibrated model of Brut-
saert et al. (2020). Namely, if its performance is affected by
similar changes (from long-term mean monthly values to
monthly values) in the input/forcing variables, then some cau-
tion must be exercised during its routine future application,
and recalibration of its seven parameters may be necessary.
Note that besides the different scaling of x, everything is the
same (including data requirements) in the two GCR model
versions applied here, except that A in E, is evaluated at the
measured air temperature in Brutsaert et al. (2020) while the
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same in E,, (= aE,) is evaluated at an estimated wet-environ-
ment air temperature (Szilagyi et al., 2017) explained
above.

Both model versions (denoted for brevity by GCR-stat
and GCR-dyn, respectively) were tested over the contermin-
ous United States, first with long-term averages
(1981-2010) of monthly 32-km resolution North American
Regional Reanalysis (NARR) (Mesinger et al., 2006) radi-
ation and 10-m wind (u;,) data [reduced to 2-m values via
uy = uyo (2/10)17 (Brutsaert, 1982)], as well as with 4.2-km
PRISM air, and dewpoint temperature values (Daly et al.,
1994) followed by a continuous 37-year simulation of
monthly values over the 1979-2015 period. The NARR
data were resampled to the PRISM grid by the nearest neigh-
bor method. Monthly soil heat fluxes were considered negli-
gible. Evaluation of the model estimates were performed by
water-balance estimates of basin-representative evaporation
rates (E,;,) with the help of United States Geological Sur-
vey two- and six-digit Hydrologic Unit Code (HUC2 and
HUC6) basin (Fig. 1) discharge data (Q) together with
basin-averaged PRISM precipitation (P) values as E;, = P —
0, either on an annual (for trend analysis) or long-term
mean annual basis. The application of a simplified water bal-
ance is justifiable as soil-moisture and groundwater-storage
changes are typically negligible over an annual (or longer)
scale (Senay et al., 2011) for catchments with no signific-
ant trend in the groundwater-table elevation values.

3. Results and discussion

With the long-term mean monthly data, GCR-stat per-
formed slightly but consistently better than GCR-dyn (Fig. 2),
reflected best in the Nash—Sutcliffe model efficiency (NSE)
and root-mean-square error (RMSE) values, both models
providing unbiased, basin-averaged mean annual ET estim-
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ates. This outcome is unsurprising, as GCR-stat takes advant-
age of measured precipitation while GCR-dyn does not.

However, the picture changes when switching from
long-term mean monthly forcing values to monthly values
in a continuous simulation (Fig. 3). GCR-dyn, with a
slightly changed PT-a value [from 1.13 to 1.15, using the pro-
cedure of Szilagyi et al. (2017)] continues to produce
unbiased estimates of basin-averaged mean annual evapora-
tion values. However, the globally calibrated GCR-stat
model underestimates the water-balance-derived values by
about 10% [i.e., relative bias (RB) of —0.09 for both basin
scales] and produces reduced interannual variability (see the
horizontally elongated ‘“crosses” for the HUC2 basins in
Fig. 3) in comparison with GCR-dyn. Reduced model per-
formance of GCR-stat is also apparent in the long-term lin-
ear tendencies (obtained as least-squares fitted linear trends)
of the basin-averaged annual evaporation values (Fig. 4) by
being less effective than GCR-dyn in reproducing the
observed linear trends in the water-balance data.

As on a mean-annual basis GCR-stat performs better
than (with mean monthly values) or about equal to (in a con-
tinuous simulation) GCR-dyn by exploiting precipitation
data (which on the watershed scale naturally serves as an
upper bound for land ET), its weakened performance in
trends can only be explained by the same reliance on the
long-term means of the precipitation (and E,) rates in the
(therefore) static a, values that will hinder its response to
slow (decadal) changes in aridity. The same problem can-
not occur in GCR-dyn, since its wetness index (w) is
updated in each step of calculations.

The current GCR-dyn model has already been shown to
(a) yield correlation coefficient values in excess of 0.9 with
local measurements of latent heat fluxes across diverse cli-
mates in China (Ma et al., 2019) in spite of large differ-
ences in spatial representativeness (i.e., grid resolution vs
flux measurement footprint), and (b) outperform several popu-

Kilometers

Fig. 1. Distribution of the 18 HUC2 (outlined in red) and 334 HUC6 basins
across the conterminous United States. Seven HUC6 basins, marked by
green, yielded outlying water-balance-derived evaporation estimates and were

left out of model comparisons.
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Fig. 2. Regression plots of model estimates [Eg (a, ¢) from GCR-dyn; Eg (b, d) from GCR-stat) against water-balance (E;,)
evaporation rates. Long-term mean (1981-2010) monthly values served as model forcing. a = 1.13 in GCR-dyn (a, c). NSE:
Nash-Sutcliffe model efficiency; R: linear correlation coefficient; RB: relative bias; RMSE: root-mean-square error (mm); SR: ratio
of standard deviations of the mean annual model and water-balance values.

lar large-scale ET products over the conterminous United
States (Ma and Szilagyi, 2019). These products include
three LSMs—namely, Noah (Chen and Dudhia, 2001), VIC
(Liang et al., 1994), and Mosaic (Koster and Suarez, 1996);
two reanalysis products—namely, NCEP-II (Kanamitsu et
al., 2002), and ERA-Interim (Dee et al., 2011); another two
remote-sensing based approaches—namely, GLEAM (Mir-
alles et al., 2011; Martens et al., 2017) and PML (Zhang et
al., 2017; Leuning et al., 2008); and a spatially upscaled
eddy-covariance measurement product, FLUXNET-MTE
(Jung et al., 2011). In a comparison with water-balance
data, GCR-dyn turns out to produce even better statistics on
the HUC2 scale than the spatially interpolated eddy-covari-

ance measured ET fluxes (Fig. 5), which is remarkable from
a calibration-free approach. GCR-dyn especially excels in
the long-term linear tendency estimates of the HUC2 ET
rates, demonstrated by Figs. 6 and 7. As FLUXNET-MTE
employs several temporally static variables for its spatial inter-
polation method, its ability to capture long-term trends is
somewhat limited (Jung et al., 2011). On the contrary, the
dynamic scaling inherent in GCR-dyn automatically adapts
to such trends and identifies them rather accurately.

Among the different popular large-scale ET models,
GCR-dyn produces multi-year mean annual ET rates clos-
est in its spatial distribution to those of FLUXNET-MTE
(Fig. 8), with a spatially averaged ET value almost identical
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Fig. 3. Regression plots of model estimates [Eg (a, ¢) from GCR-dyn; Eg (b, d) from GCR-stat] against water-balance (E\;,)
evaporation rates. Monthly (1979-2015) values served as model forcing for the continuous simulation of monthly evaporation
rates. a = 1.15 in GCR-dyn (a, c). The vertical and horizontal bars represent the standard deviation of the annual modeled and
water-balance HUC2 values, respectively. The large number of data points hinders a similar plot for the HUC6 values.

(both in its spatial average and standard deviation) to that of
GLEAM (Fig. 8), which is a remote-sensing based approach.
Note that all models of the comparison (except GCR-dyn)
rely on precipitation data as input, which greatly aids ET
estimations, as on a regional scale and long-term basis precip-
itation forms an upper bound for terrestrial ET rates; plus,
itmay drive any required soil-moisture water-balance calcula-
tions.

The spatial distribution of the modeled multi-year lin-
ear ET trends is displayed in Fig. 9. Again, GCR-dyn pro-
duces results closest in spatial distribution to FLUXNET-
MTE in terms of the statistically significant trends and to

GLEAM in general. For a more detailed discussion of
model comparisons (including additional model descrip-
tions), please refer to Ma and Szilagyi (2019).

In conclusion, it can be stated that the GCR of evapora-
tion (Brutsaert, 2015) is a very effective tool in land ET mod-
eling, as it requires only a few, largely meteorological for-
cing variables, and avoids the need for detailed soil-mois-
ture and land-cover information. Although attractive, as its
(altogether seven) parameters have already been globally pre-
calibrated, the GCR model version (GCR-stat) of Brutsaert
et al. (2020) may, however, not perform optimally in estimat-
ing long-term tendencies in basin-wide ET rates. This is par-
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Fig. 4. Regression plots of the linear trends (1979-2015) in annual modeled [Es (a, c) from GCR-dyn; Eg (b, d) from GCR-stat]
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ticularly the case in comparison to an earlier, calibration-
free version (GCR-dyn), having no precalibrated parameter
values but requiring that its sole, temporally—and
spatially—constant parameter (i.e., the PT coefficient) be set
using the actual forcing data through a largely automated
method, described in Szilagyi et al. (2017). Since in a continu-
ous monthly simulation both models performed about the
same, while the GCR-dyn produced better long-term tenden-
cies, a dynamic scaling of E,, E;~! is recommended over a

static one in future applications of the GCR of evaporation.
As has been recommended before (Szilagyi, 2018b; Szil-
agyi and Jozsa, 2018; Ma and Szilagyi, 2019), it is reiter-
ated here that GCR-dyn, due to its minimal data require-
ment, calibration-free nature and dynamic scaling, may con-
tinue to serve as a diagnostic and benchmarking tool for
more complex and data-intensive models of terrestrial ET
rates, including calibration/verification (for past values) and
reality checking (for future scenario values) of the LSM-
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Szilagyi, 2019).

predicted ET rates of existing regional and general circula-
tion models.
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