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[1] New theoretical considerations indicate that the
complementary relationship (CR) of evaporation is
inherently asymmetric when the time rate of change
between actual and apparent potential evaporations is
considered. The theory also estimates the extent of this
asymmetry as a function of the surface temperature and
predicts that a symmetric CR, independent of the surface
temperature, can only be expected when no energy
exchange between the source of the apparent potential
evaporation process and its surroundings occurs, a rather
unrealistic situation. The derived asymmetric CR is
employed for operational evaporation estimations. The
parameters of the proposed practical evaporation
estimation model are from the Priestley-Taylor and
Penman equations. Citation: Szilagyi, J. (2007), On the
inherent asymmetric nature of the complementary relationship
of evaporation, Geophys. Res. Lett., 34, 102405, doi:10.1029/
2006GL028708.

1. Introduction

[2] The complementary relationship (CR) of Bouchet
[1963], written in energy flux units, relates actual (LE)
and potential evaporation rates (LE,) to wet environment
evaporation (LE,,)

LE + LE, = kLE,, (1)

where £ is a constant of proportionality. Throughout the text
the term evaporation includes the transpiration of vegetated
surfaces as well. Bouchet did not specify how the different
terms should be calculated in (1), thus it took some time
before his idea was put into practice by Brutsaert and
Stricker [1979] in their Advection Aridity (AA) model.

[3] The definition of potential evaporation is ambiguous
due to what constitutes as a ‘large area’ covered by actively
growing vegetation the evapotranspiration of which should
be considered under unimpeded access to water [Brutsaert,
2005]. As known, the rate of evaporation of such a moist
vegetated area is a function of its size due to the so-called
‘oasis effect’ of energy transport to the area, the relative
importance of which diminishes with the size of the moist
surface. In contrast, the application of the apparent potential
evaporation [Brutsaert, 2005] is much less ambiguous,
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since it considers the rate of evaporation under the actual
meteorological and surface conditions from a source of
water that is small enough in size as to not be able to
influence the prevailing conditions of its surroundings. In
theory it means that the saturated vapor pressure of the
water source is taken at the temperature of the surrounding
surface [Brutsaert, 2005]. The latter is rarely known in
practice leading one to the application of the Penman
equation [Penman, 1948] with data that represent the actual
meteorological conditions. As an alternative, the evapora-
tion rate of a pan can be considered as a widely used
practical measure of the apparent potential evaporation. In
what follows, reference to potential evaporation, LE,, will
always be considered as the apparent potential evaporation.

[4] In Brutsaert and Stricker’s [1979] Advection-Aridity
model formulation of the complementary relationship, LE,
was calculated with the help of the Penman equation
[Penman, 1948]

A 7

LE ., -+
Q Aty

= E 2
‘P A+7 A ( )
where A is the slope of the saturation vapor pressure
curve at the air temperature, 7y is the psychometric
constant, O, is the available energy, and E, is the drying
power of the air

Ey=f(u)(e* —e) 3)

with e* and e being the saturation (taken at the air
temperature) and actual vapor pressure values, respec-
tively, and flu) is a wind function. The LE, term is
specified by the Priestley-Taylor equation [Priestley and
Taylor, 1972]

A
LE, =c-——0, 4
50 @

where c¢ is the Priestley-Taylor parameter. Employing the
so-defined terms of (1), Brutsaert and Stricker [1979]
assumed that the CR is symmetric around the LE,, value,
ie.,

LE + LE, = 2LE, (5)

which has become, for its simplicity and practical
applicability, widely used.

[s] Recently Kahler and Brutsaert [2006] demonstrated
how class A pan evaporation (LE,,) data, as a practical
measure of LE,, can be employed to estimate actual
evaporation on a daily basis with the help of an inherently
symmetric CR. When used with evaporation pan data,
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according to them, the assumed symmetric nature of the CR
becomes asymmetric, i.e.,

LE + LE, > 2LE, (6)

is valid instead of an equality. They point out that the
asymmetry present in (6) is due to the nature of heat transfer
between the pan and its surroundings. As the environment
dries, the class A pan receives more energy per unit area
than the surrounding land because (a) its side and bottom
are exposed, allowing for additional heat transfer in the
form of conduction and radiation, and; (b) its small size
(and material and thermal properties different from its
surroundings) leads to local advection of energy from the
surrounding environment. This will mean that the change in
the apparent potential evaporation, as the environment dries
from an initially wet condition, will be larger than the
corresponding change in actual evaporation, i.e.,

LE, — LE,, = b(LE,, — LE) (7)

where b > 1 is another constant of proportionality.
[6] Rearrangement of (7) leads to

1+b 1
= i LE,

LE =~ ~LE, ~  LE, (8)

which serves as the operational evaporation estimation
method of Kahler and Brutsaert [2006], where for LE,, the
term alLE,, is inserted, o being a pan coefficient, assumed
to be unity. (8) can be considered as a modification of the
original AA model specific to pan data.

[7] The major thrust of the present study is to show
through theoretical considerations and subsequent data
analysis that the asymmetry that arises in (6) is directly
and inherently linked to the definition of apparent poten-
tial evaporation and not limited only to class A pan
measurements. An operational evaporation estimation
method, alternative to the original AA model by
Brutsaert and Stricker [1979] and its modification by
Kahler and Brutsaert [2006], is also derived where the
coefficients b and ¢, the latter from the LE,, term of (8),
come out as well known quantities.

2. Theoretical Considerations About the
Complementary Relationship

[8] Let’s assume that the net energy, O,, available at the
surface, is constant through time and that it is fully utilized
by the sensible (H) and latent heat (LE) fluxes between the
surface and the adjacent air. From an assumed constant 0,
term one obtains

OH
OLE

. 9)

where the operator 0 denotes differentiation with respect to
the variable specified in its index (i.e., time here).

[¢] For an arbitrarily small area on the surface continu-
ously having the same surface temperature as the drying
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environment but with unlimited access to water (i.c., repre-
senting apparent potential conditions), one can write

0,H, = O,H. (10)
As a working hypothesis let’s assume that the ratio of the
time rate of change of the evaporation terms belonging to
the drying environment (LE) and the small wet area (LE,)

respectively, depends at most on the uniform temperature
(T;) of the surface only (or otherwise it is a constant), i.e.,

OLE
s =/ ) (1)
From (9)
OLE = —9,H (12)
therefore
OLE 01y, (13)

OLE, OLE,

(9) and (10), employing a Dalton-type approach for the
sensible and latent heat fluxes, yield

OH, OH _ 0(ud.T)

OLE, OLE, 0, (fir0.e,)

(14)

where f; = —flu)cy, frg = —Au) 0.622 L/p and where it was
also considered that near the surface the potential
temperature is very close to the actual temperature. Here
u) is the wind function, ¢, is the specific heat of air taken
at a constant pressure, L is the latent heat of vaporization, e,
is the vapor pressure at the completely wet surface of
arbitrarily small extent, p is the air pressure and z denotes
the vertical direction.

[10] Let’s assume now that in (14) the sensible and latent
heat fluxes will change predominantly due to the temporally
changing vertical gradients of temperature and water vapor
as evaporation from the surface, surrounding the arbitrarily
small wet patch, decreases due to limited water access and,
as a consequence, the warming up of the surface during a
dry spell. (This is not to say that the f; and f; ; terms would
not change with the increasing instability of the air as the
environment dries). This way the fy; and f;p terms are
brought out of the temporal differentiation. Changing the
order of differentiation next yields

OH  fu0,0.T 0.0,T
= = — —f(T,). 1

LE,  firode, " ode ) (15)
Here the v = fy/fir term is the psychometric constant. By
first rearranging the right-hand-side of (15) (i.e., v0.0,T =
—f(T:)0.0,e,) and then integrating it with respect to z, one
obtains

V0T, = ~f (T,) 0kl + F (1) (16)
where F(?) is the integral constant that can only depend on
time or be a simple constant. The e, term now becomes e%,
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the saturation vapor pressure at the surface temperature, 7,
since the vertical gradient terms dropped out. The
dependence of the v on z was neglected. F(¢) cannot be a
function of time, since a shift in the time reference should
not change the results, so it can only be a constant. But that
cannot be different from zero since the time rate of change
for T; is zero only when the same for e¥ is zero and vice
versa. Note that under a constant O, condition the vertical
gradients of the temperature and vapor pressure terms
cannot change independently either, by virtue of (9) and
(15). Also, the 0.0,7/0.0,e, term in (15) can only be
replaced by the 0,T,/0.e% term from (16) (obtained with
F(t) = 0 and both sides divided by 0,e%) if there is a change
in the surface temperature of the wet patch to avoid an
indeterminable expression in the latter.
[11] By combining (15) and (16) with F(f) = 0 leads to

OH N 0T
OLE, a,e;k

= _f(TS)' (17)

(17) can be written as

oOH ~y
= 18
OLE, A, (18)

where A is the slope of the saturation vapor pressure curve
at T, the surface temperature.
[12] From (12) and (18) one obtains

OGLE _OLE v (19)
OLE, OLE, A,

which corroborates the working hypothesis that the ratio of
the time rate of change of the actual and apparent potential
evaporation terms is indeed a function of the surface
temperature, and not a constant, as a symmetric CR would
suggest.

[13] From the above it follows that the CR is symmetric
only, independent of the surface temperature, when there
exists no energy transfer between the source of the apparent
potential evaporation and its surroundings. When this latter
happens, the energy available for the apparent potential
evaporation process remains constant, therefore (9) is valid

Oy (20)
O,LE,

Combining it with (17) yields

al]_[p 8trvp
=V =
OLE, Oyes

1 (1)

which can never happen as long as the wet surface
temperature, Tj,, changes in time. When, however, T, is
constant, (21), in order to avoid an indeterminable 0/0
expression, must be written with the vertical gradients taken
at the wet surface, i.e.,

. 2aT,

- 2
i) Dre, (22)
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which is guaranteed to be negative since the numerator is
always positive, and the denominator is the opposite, as the
environment dries up. From (9) and (20) the CR now
becomes symmetric

OLE
AL, = ~1 (23)
with the customary 0H = OLE,, assumption [e.g., Hobbins et
al., 2001], independent of the surface temperature.

[14] As a summary the theory predicts that the CR should
generally be asymmetric in nature when the time rate of
change between actual and apparent potential evaporation is
considered. It specifies the degree of asymmetry as a
function of the surface temperature yielding an equal but
opposite change in the two evaporation terms provided the
surface temperature is about 6°C, i.e., when v = A at around
1000 hPa. The theory further predicts that the CR can be
symmetric, independently of the surface temperature, only
when there is no energy exchange between the source of
apparent potential evaporation and the drying environment
[Szilagyi, 2001], which is a very unrealistic condition.

[15] The explanation of the predicted asymmetry of the
CR lies in the energy supply the drying environment,
characterized by increasing surface and air temperatures,
provides toward the source of the apparent potential evap-
oration to elevate its surface temperature, which would
otherwise stay constant as was shown above. This way
the apparent potential evaporation process locally consumes
more energy than available overall from an assumed con-
stant O, term. This energy transfer is universally present in
reality mainly as (a) advection of warmer air over the small
wet area, and; (b) heat conduction in the ground from the
surrounding warmer and dryer soil.

[16] The present theory considers two extremes, on one
hand, when the heat conduction is perfect and the wet area
achieves the same surface temperature as the drying envi-
ronment, and on the other hand, when there is no energy
transfer at all between the two areas having different
wetness and therefore different surface temperatures. The
application of the Penman equation is a proxy for the perfect
heat conduction case as it employs drying environment
characteristics. In reality, practical measures of apparent
potential evaporation, such as the application of an evapo-
ration pan or an evaporimeter found at standard meteoro-
logical stations, may express a degree of asymmetry
between (and perhaps beyond for evaporation pans due to
differences in surface properties between the pan as well as
its water and the surrounding vegetated land) the two
theoretical extremes considered.

3. Formulation and Testing of the Practical
Operational Evaporation Estimation Model
and Discussion

[17] The above results can be utilized in formulating an
operational evaporation model. (19) written in finite differ-
ences between the actual and wet environment values, i.e.,
when LE = LE, = LE,,, and after rearrangement yields

Y YLE, Y
LE = <1 + F)LEW N P — LE, + AF (LE, — LE,) (24)

¥ =
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Figure 1. (a) Daily actual (LE) and pan evaporation (LE,,,) data for 1987 and 1989 near Manhattan, KS. £,, = LE/LE,
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(b) LE,,-normalized values of actual (£,) and pan evaporation (£,,) with ¢ = 1.18 (hollow symbols) and ¢ = 1.15. The
curves represent (26) and (27) with b = 9.45 and € = 4.71, respectively, Ey; = LE/LE,,,. (c) LE,-normalized values of
actual (£) and Penman-equation (PM) evaporation (£,,;) with ¢ = 1.2 (hollow symbols) and ¢ = 1.17. The curves represent
(26) and (27) with b = 4.21 and ¢ = 2.24, respectively, Ey; = LE/LEp),. (d) Dimensionless graph of the complementary

relationship as predicted by (27) with € = 1.

where the slope of the saturation vapor pressure curve is
taken with an effective value, A*. This is necessary,
because A is a function of the changing surface
temperature, the value of which is not known even under
reference wet environment conditions. Since in practice not
only the reference wet environment surface temperature is
unknown but so is the actual surface temperature, the
effective temperature at which A* is calculated must
somehow be related to the only known temperature value,
which is the actual air temperature. The simplest approach
is through a constant, ¢, i.e., A* = ¢/, where A is the slope
of the saturated vapor pressure curve taken at the actual air
temperature. This way (24) becomes

~

eA

LE,
R =LE, + l (LEW

LE = (1 * IFAN eA

)LEW - ~LE,) (25)

which is the practical evaporation estimation model. (25) is
similar to (8) except b = €A/ now.

[18] For the present analysis, data from the First Interna-
tional (Satellite-Land Surface Climatology) Field Experi-
ment (FIFE) were employed. This includes two Bowen-ratio
flux measurement stations for the periods May 26—October
17 in 1987 (station #40) and July 21—August 14 in 1989
(station #944); an eddy-correlation station with the longest
available continuous record for 1987 (station #26) as well as
a class A pan at the Tuttle Creek dam near Manhattan,
Kansas. For a general description of the measurement site
and experimental settings, please, refer to Kahler and
Brutsaert [2006]. Note that (a) in 1987 the revised data

set of FIFE was employed; (b) the surroundings of the pan
are far from ideal. The pan not only sits 300 m directly
south of the dam as reported by Kahler and Brutsaert
[2006], but it is also a few hundred meters from a sizeable
lake (River Pond State Park) to the south. This fact certainly
contributes to some uncertainties in the ensuing data anal-
ysis, which involves this pan in relation to the CR. Conse-
quently, choosing the days with certain predominant wind
directions [Kahler and Brutsaert, 2006] has been aban-
doned and all available records for the time period were
retained instead. The flux measurement stations #40 and
#944, distributed on the FIFE CDs, did not include air
temperature data, so for that the meteorological station at
Kansas State University in Manhattan was used in the
analysis. The data required by the Penman equation for
calculating the drying power of the air were from the NCDC
(for 1989) and NOAA (for 1987) surface measurement
stations in Manhattan, also included in the FIFE CDs.

[19] Daily evaporation flux was calculated as the mean of
the two flux stations’ daily values in 1987 when both
sources of data were available. Figure la displays these
daily actual and pan evaporation values as a function of a
soil moisture index, E); = LE/LE,,. The data scatter in
Figure la can be reduced (Figure 1b) by normalizing the LE
and LE,,, values with LE,, of (4). From (8) the normalization
yields

(14+b)Ey

E. =
T 1+ bEy

(26a)
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1+b

E,=—""
P T L bEy

(26b)

Performing a nested trial-and-error optimization routine for
both coefficients ¢ and b in (8), and accepting an updated
value of the parameters only when the reduction in the
ensuing sum of squared-error (SSE) is larger than 1% of the
previous value, Figure 1b results with ¢ = 1.18 and b = 9.45.
Here an interesting property of the dimensionless graph of
Figure 1b ought to be mentioned. Namely, the curve
optimized via (8) is not, and will not be, the best-fit curve of
the dimensionless graph. A short proof is given in
Appendix A. As mentioned by Kahler and Brutsaert
[2006], a moisture index (£,y) that is derived independently
from actual evaporation to be estimated would be preferable
to the present formulation, where the index itself contains
the desired evaporation value. Such a choice for E,;; could
be the ratio of LE,, and LE,. Application of this new
moisture index, however, necessarily results in a com-
pressed range of E,,; values (i.e., 0.5—1 for a b = 1 choice
and somewhat larger for b > 1), and while it circumvents the
problem of obtaining differing optimal parameter values of
c and b depending on whether the optimization is based on
dimensionless or original data, mentioned above, it leads to
such a cloud of £, in the dimensionless graph that a clear
complementarity between LE, and LE becomes difficult to
detect. As a consequence, the results of the ensuing analysis
will be demonstrated with Kahler and Brutsaert’s [2006]
original moisture index. Note, however, that both indices
result in the same estimates of ¢ and b, as long as the
optimization is based on (8).

[20] Figure 1b also displays the evaporation estimates
based on an optimization of (25), approximating LE,, with
(4) and LE,, with the pan readings, along with the measured
evaporation flux data. Again, the normalization of (25) by
LE,, yields

(1 +eA/7)Em

E, = 27

* 1+EAEM1/’Y ( a)
1 +eA/y

Eyfy=————r 27b

=TT AR (27b)

The values of € and ¢ became 4.71 and 1.15, respectively. The
fit between observed and predicted E. values remained the
same, i.e., the root-mean-square-error, RMSE = 0.18.

[21] For further testing (Figure 1c), the Penman [1948]
equation with its original wind function [Brutsaert, 2005]
was used in place of the evaporation pan measurements to
estimate LE, [Crago and Crowley, 2005]. The optimized
value of b became 4.21 while the optimized value of ¢
changed only slightly to 1.2. The explained variance by the
model (R?) remained the same as with the pan values, 0.75.
When the same optimization was next performed with (25),
the optimized value of € and ¢ became 2.24 and 1.17,
respectively. The R? value did not change, it remained
0.75, as with the pan data. The fit between observed and
theoretical values improved in Figure lc compared with
Figure 1b with an RMSE = 0.12 now for both methods.

[22] There remained the formulation of a practical oper-
ational evaporation model that is based on the predicted
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asymmetric property of the CR and does not contain any
parameters to be tuned. Since the optimized value of the
original model’s b in (8) (as shown by Kahler and Brutsaert
[2006]) or the revised model’s € parameter (being close to
unity) in (25), may change from place to place or from
season to season (due to changes, e.g., in vegetation), the
practical operational model can have a predefined value of
e = 1. Choosing of a suitable ¢ value was achieved by
optimizing (25) with an ¢ value of unity employing both
pan evaporation and Penman equation values. With the pan
data, the optimized value of ¢ became 1.31 (R = 0.62),
while with the Penman equation values it became 1.24 (R* =
0.72). These two values bracket tightly the mean value of
1.26 of the same coefficient reported by Priestley and
Taylor [1972]. Consequently, the practical operational
model can have a ¢ value of 1.26. The practical evaporation
model better performs (as expected) with the Penman (R? =
0.72) than with the pan values (R” = 0.62) and its perfor-
mance is almost the same as that of its fully optimized
version.

[23] This same practical evaporation model (¢ = 1 and
¢ = 1.26) has been first applied by Crago and Crowley
[2005] in a large comparative study involving six other CR-
based evaporation estimation models and performed by far
the best. Their best performing evaporation estimation
model was criticized by Lhomme and Guilioni [2006] for
being built on faulty arguments by Granger [1989]. Inter-
estingly, the present theoretical considerations, completely
different from Granger’s [1989], have lead to the same
practical model as was first proposed by him and recently
tested by Crago and Crowley [2005].

[24] Finally, Figure 1d depicts the CR in a dimensionless
form as expressed by (27) with € = 1. The CR is symmetric
only when the surface temperature is about 6°C (and air
pressure is 1000 hPa), and asymmetric otherwise. With
(2) and (4) for the LE, and LE,, terms the CR thus becomes

LE + LE, < 2LE,,, T, <6°C
LE + LE, ~2LE,,, T,~6°C
LE +LE, > 2LE,,, T,>6°C

(28)

Note that the temperature at which the CR becomes
symmetric changes with elevation due to the pressure
dependence of the psychometric constant.

[25] The above illustrated asymmetric nature of the CR
not only helps interpret the results of Kahler and Brutsaert
[2006] in a more general way, but it may also explain why
(a) Crago and Crowley [2005] obtained the best evaporation
estimates with the (25)-modified AA model (with € = 1) out
of six CR-based evaporation estimation methods, and;
(b) Szilagyi et al. [2001] observed a pan evaporation
decrease of about 6% over the conterminous US in the
period of 1948—1996, accompanied only by an about 3%
increase in actual evaporation. It very likely also explains
why Hobbins et al. [2001] had to optimize the original AA
model (built on a symmetric CR) of Brutsaert and Stricker
[1979] locally to match the predictive power of another
CR-based model by Morton [1983]. Note that in the Morton
model the LE,, term is purposefully defined (differently
from Priestley and Taylor [1972]) in a way that compels his
formulation of the CR to be symmetric, as was pointed out
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by Granger [1989]. Furthermore, the asymmetric nature of
the CR discussed here obviates the need of correcting the
pan measurements of Ramirez et al. [2005] to bring their
data in accordance with an expected symmetric CR. Finally,
it also provides an explanation of the observed asymmetric
relationship between actual and apparent potential evapora-
tion that was obtained by Pettijohn and Salvucci [2006]
with their FIFE data analyzed, different from the one
reported here.

Appendix A

[26] The objective function of the parameter optimization
must have a minimum with the optimized values of the
parameters, i.e.,

{524

where we omitted the indices for simplicity. From (26a) the
so-derived parameter values will lead to a best-fit curve in
Figures 1b and lc provided

(A1)

2
Z{ LE (14 b)LE/LE,,} o a2)
LE, 1+bLEJLE,

also. This last condition holds true only, if the estimate of
LE in (A2) is a (yet unspecified) function of that of (Al).
But this is clearly not the case, since the estimate of LE in
(A2) contains LE itself, which is not of a strictly functional
relationship (due to, e.g., measurement error) with either
LE,, or LE,. This concludes the proof.

[27] Acknowledgments. The author is grateful to Rich Crago and to a
second anonymous reviewer whose comments led to important revisions.
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