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Abstract

A discrete version of the Kalinin–Milyukov–Nash-cascade is formulated for operational forecasting of stream stages when no

information of rating curves is available. Model performance is slightly reduced in comparison to flow routing results using

accurate, single-valued stage-discharge relationships. However, when only inaccurate rating curves are available, the present

approach may yield superior forecasts. Since in practice the accuracy of the employed rating curves, used to convert stage

measurements into discharge values for flow routing, may be somewhat uncertain, application of the present technique is

recommended for rating-curve falsification. The method allows for stage predictions using physically based flow routing in

rivers where flow rates are unknown or the available rating curves are inaccurate. The technique can also be used without

modification for streams with tributaries.
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1. Introduction

The Saint-Venant equations (continuity and

momentum) of open channel flow define a system of

distributed parameters where the dependent variable,

flow rate, is a continuous function of distance along

the channel, in addition to time. In practical

applications, information of channel properties is
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available at certain locations only, requiring the

transformation of the partial differential equations

into either ordinary or algebraic equations, which

describe the flow at specified cross-sections of the

channel. This entails a lumped parameter system of

flow routing in place of the original distributed

parameter one, where now the dependent variable is

only a continuous function of time. A great majority

of the flow routing methods are based on the

kinematic wave equation, the latter being a first-

order approximation of the momentum equation. The

Kalinin–Milyukov–Nash (KMN) cascade (Kalinin

and Milyukov, 1957; Nash, 1957) is such a linear

flow routing approach, whose discretized version

using a pulse-, and subsequently, a sample-data
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system framework were presented by Szöllősi-Nagy

(1982) and Szilagyi (2003), respectively, both in a

state-space formulation.

The state-space description of the linear kinematic

wave equation (with no lateral inflow)
vQðl; tÞ

vt
CC

vQðl; tÞ

vl
Z 0

Qð0; tÞ Z Q0ðtÞ

Qðl; tÞsN; as l/N; tR0

(1)
where Q[L3TK1] is discharge, C[LTK1] is wave

celerity, l and t are spatial and temporal coordinates,

respectively; can be obtained by applying a backward

difference-scheme for the spatial derivative
dQðlj; tÞ

dt
ZKC

Qðlj; tÞKQðljK1; tÞ

Dl

Z
C

Dl
QðljK1; tÞK

C

Dl
Qðlj; tÞ 1% j%n (2)
Introducing the state variable x of the flow-rate

values of n serially connected subreaches (Fig. 1)
xðtÞ Z

Qðl1; tÞ

Qðl2; tÞ

«

Qðln; tÞ

266664
377775 (3)
Fig. 1. Spatial discretization of the linear kinematic wave equation.
and having u(t)ZQ0(t)ZQ(l0,t), one can write
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C

C
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26666664

37777775uðtÞ (4a)

or in a more succinct form as

_xðtÞ Z FxðtÞCGuðtÞ (4b)

which is the state equation of a linear, time-invariant

continuous dynamic system (Szöllősi-Nagy, 1982).

Discharge from the last subreach is the flow rate, y(t),

of the whole reach

yðtÞ Z ½0; 0;.; 1�

Qðl1; tÞ

«

Qðln; tÞ

264
375 (5a)

or

yðtÞ Z HxðtÞ (5b)

The KMN-cascade results by considering each

subreach as a linear storage element having the

property

QðtÞ Z
1

K
sðtÞ (6)

where s[L3] is water volume in storage within the

element, and K[T] is the mean residence time of it.

The inverse of the mean residence time, kZKK1, is

called the storage coefficient of the linear storage

element.

By expressing the storage coefficient, k, with C/Dl,

and again considering n serially connected
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subreaches, the substitution of Eq. (6) into Eq. (4a)

yields

_s1ðtÞ

_s2ðtÞ

«

_snðtÞ

266664
377775Z

Kk 0

k Kk

1 1

0 k Kk

266664
377775

s1ðtÞ

s2ðtÞ

«

snðtÞ

266664
377775C

1

0

«

0

266664
377775uðtÞ

(7a)

or in matrix notation

_sðtÞZ F�sðtÞCG�uðtÞ (7b)

with the output equation defined as

yðtÞZ ½0;0;.;k�

s1ðtÞ

«

snðtÞ

264
375 (8a)

or

yðtÞZ H�sðtÞ (8b)

The two linear systems defined by Eqs. (4b), (5b),

(7b), and (8b), are equivalent, since their impulse

responses are the same (Szöllősi-Nagy, 1989; Desoer,

1970) through the kZC/Dl substitution.

An interesting property of the two systems

must be mentioned here that makes them effective

tools of flow routing. The spatial discretization

introduces an artificial diffusion (Cunge, 1969) into

the system equations and so enables them to

account for diffusional processes and thus approxi-

mate the solution of the linear diffusion wave

equation, the latter itself a second-order approxi-

mation of the momentum equation (Szöllősi-Nagy,

1989)

vQðl; tÞ

vt
CC

vQðl; tÞ

vl
Z D

v2Qðl; tÞ

vl2
(9)

where D[L2TK1] is a constant. Because the discrete

KMN-cascade of Eqs. (7b) and (8b) is equivalent to

Eqs. (4b) and (5b) from a systems point of view,

and the latter being a special discretized form of the

linear kinematic wave equation, these authors

consider the discrete KMN-cascade a physically

based flow routing technique.

Below it is demonstrated how the KMN-cascade

can be formulated for flow routing when flow-rate
information is absent. Considering that for larger

streams and for rivers the primary source of flow

information is in the form of stage measurements,

such an approach may especially prove useful. These

stage measurements are converted into instantaneous

flow rates through the application of an established

rating curve for the channel cross-section in question.

It should be noted that all flow routing techniques

assume negligible backwater effects in the stream as

well as an essentially single-valued rating curve

(Fread, 1993).
2. Model description

The linear storage equation (Eq. (6)) results if one

assumes that the exponent (a) is the same in the

functional relationships between flow rate and stage

as well as between water stored in a channel reach and

stage

QðtÞ Z c1½HðtÞCa�a (10a)

sðtÞ Z c2½HðtÞCa�a (10b)

where H[L] is the measured value of stage above or

below datum, and c1 [L3KaTK1], c2 [L3Ka], and a [L]

are constants. Dividing Eq. (10a) by (10b) yields

QðtÞ Z
c1

c2

sðtÞ Z ksðtÞ (11)

Inserting Eqs. (10a), (10b), and (11) into the

lumped continuity equation of the channel reach

_sðtÞ Z Q1ðtÞKQ2ðtÞ Z Q1ðtÞKksðtÞ (12a)

results in

c2a½H2ðtÞCa�aK1 dH2ðtÞ

dt

ZK
c1

c2

c2½H2ðtÞCa�a Cc3½H1ðtÞCb�b (12b)

where the subscripts 1 and 2 refer to the up-

and downstream ends of the channel reach, and c3

[L3KbTK1], b [L] , and b are constants of the stage-

discharge relationship of the upstream location.
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By rearranging Eq. (12b) one obtains

dH2ðtÞ

dt
ZK

c1

c2a
½H2ðtÞCa�C

c3

c2a

½H1ðtÞCb�b

½H2ðtÞCa�aK1

(13)

which shows that in general the future outflow rate of

the reach is determined by a certain combination of in-

and outflow rates through the last term of the right-

hand-side of the equation. However, by assuming that

both exponents are unity, Eq. (13) simplifies into

dH2ðtÞ

dt
ZK

c1

c2

H2ðtÞC
c3

c2

H1ðtÞCc4

ZKkH2ðtÞCcH1ðtÞCc4 (14a)

where cZc3/c2 [TK1], and c4 [LTK1] are other

constants. In comparison with Eq. (12a) or (7a), the

constant multiplier of H1 and an additional constant

value now are of no concern because linearity assures

that the output is proportional to any constant

multiplier in the input values, and the presence of a

constant input means only an additional constant

value in the output values after an initial spin-up

period. Because of the arbitrary reference points in

the stage measurements of differing locations, routed

upstream stage values have to be scaled up or down

in any case to match the measured downstream stage

values, thus the presence of a constant multiplier

(and an additional constant) in the input stage values

means no extra scaling. Consequently c and c4 can be

chosen arbitrarily. In this way, Eq. (14a) can be

expressed as

dH2ðtÞ

dt
ZKkH2ðtÞCH1ðtÞ (14b)

which now is of the same form as Eq. (7a) of the

KMN-cascade when written for a single subreach.
FðDtÞ Z

eKDtk 0 0 /

DtkeKDtk eKDtk 0 /

ðDtkÞ2

2!
eKDtk DtkeKDtk eKDtk 0

« « 1 1

ðDtkÞnK1

ðn K1Þ!
eKDtk ðDtkÞnK2

ðn K2Þ!
eKDtk / DtkeK

2666666666664
The reason why the required scaling is not typically

a linear function stems from the general nonlinear

shape of the actual rating curves whereas in the

derivation of Eq. (14b) linear rating curves were

employed. The required scaling of routed to observed

stage values can be achieved by the application of a

polynomial curve fitting in the form of
dHsc
2 ðtÞ Z p1

cH2

m
ðtÞCp2

cH2

mK1
ðtÞC/

Cpm
cH2ðtÞCpmC1 (15)
where dHsc
2 is the scaled, Ĥ2 is the original model

estimate of the downstream stage value, and the pis

½LiKm� are the constant coefficients of the polynomial

of a predefined order m.

With these considerations the solution of the

KMN-cascade model can be applied. Szilagyi

(2003) derived the solution of Eq. (7b) for a sample-

data system which implies that the stage measure-

ments are available only at discrete time intervals (Dt)

with an assumed linear change in the values between

consecutive discrete samples. Applying the solution

to Eq. (14b) over n serially connected subreaches one

obtains
Hðt CDtÞ Z FðDtÞHðtÞCG1ðDtÞH1ðt CDtÞ

CG2ðDtÞH1ðtÞ (16)
where the vector H comprises the modeled stage

values of the n subreaches, the F(Dt) state-transition

matrix, and the G1(Dt) and G2(Dt) input-transition

vectors are defined as (Szilagyi, 2003)
0

0

«

0

Dtk eKDtk

3777777777775
(17)



Table 1

Stream reaches used in the study with corresponding reach lengths L

(km), average channel slopes I (%), as well as drainage areas D

(km2) belonging to the downstream stations

L D I

Nagymaros–Budapest 48.1 184,893 0.0071

Budapest–Dunaujvaros 65.9 188,273 0.0090

Budapest–Paks 115.2 189,092 0.0091

Paks–Baja 52.6 208,282 0.0065

Baja–Mohacs 31.8 209,064 0.0058

Tiszabercel–Tokaj 25.9 49,849 0.0096

Sarospatak–Tokaj 37.1 13,000a 0.0114

Arad–Mako 72.7 30,149 0.0057

a Drainage area of the tributary (Bodrog) above the confluence.
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1

k
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1
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k
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(18)

and

G2ðDtÞ Z

1

k

Gð1;DtkÞ

Gð1Þ

1

Dtk
K

eKDtk

Gð1;DtkÞ

	 

1

k

Gð2;DtkÞ

Gð2Þ

2

Dtk
K

ðDtkÞeKDtk

Gð2;DtkÞ

	 

«

1

k
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n

Dtk
K
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377777777775
(19)

The output equation now becomes

cH2ðtÞ Z ½0; 0;.; 1�

H1ðtÞ

«

HnðtÞ

264
375 (20)

the term on the left-hand-side being the input to

Eq. (15). For channel reaches with tributaries, stages

are routed separately between up- and downstream

stations on the main channel and the upstream station

of each tributary and the downstream station of the

main channel due to linearity of the KMN-cascade,

before inserting the cH2j
ðtÞ (jZ1,.,TC1, where T is

the number of tributaries within the reach) values into

Eq. (15). Then the pi (iZ1,.,m) coefficients of the

polynomial become vector-valued.

As a practical consideration it can be mentioned

that c4 in Eq. (14a) may need to be chosen different

from zero in order to avoid negative values in the

routing of stages when the upstream stage value can

drop below datum.
3. Model application and conclusions

The above model was tested on three rivers in

Hungary: the Danube, its tributary, the Tisza River,
and a tributary of the Tisza, the Maros River. See

Table 1 for a list of gaging stations with correspond-

ing drainage areas and mean channel slopes. Model

results were compared with that of an operative, real-

time hydrological forecasting version of the KMN-

cascade using actual rating-curve-derived discharge

values. The operational model uses a time-step of

DtZ12 h and employs a multilinear approach (Becker

and Kundzewicz, 1987; Szolgay, 1991) where dis-

charges are routed through parallel cascades of linear

storages representing low-, and mean-flow channel as

well as flood conditions over the floodplain, thus

creating a nonlinear model. The operative model has

3!2Z6 (n and k values for each three cascades)

parameters, plus a one-step autoregressive coefficient

for prediction error updating while the proposed

model has two, plus one autoregressive (ar), par-

ameters and is run with a time-step of DtZ24 h. To

assure identical input values for model performance

comparisons, the new model uses forecasted stage

values of a lead-time of 24 h, calculated by the

operative model for the upstream stations. Both

models were run in a continuous error-updating

mode, which means that each forecast value is

modified by a certain percentage (given by the value

of the autoregressive parameter) of the previous day’s

model error prior to error updating.

Fig. 2 displays the location of the gaging stations

used by the models. The corresponding rating curves,

required by the operative model, are displayed in

Fig. 3.

Parameters of the proposed model were optimized

with 2 years of data from the period January 1, 2000 to



Fig. 2. Spatial locations of the gaging stations used in the study.
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December 31, 2001. Model results, using the

optimized parameter values, were compared with

operative model outputs for the period January 1,

2002–September 18, 2003. Model performance was

assessed by two statistics: the mean root-square error

(s) and a Nash–Sutcliffe-type efficiency coefficient

(NSC) which is defined as

NSC Z 100 1 K

P
iðbHi KHiÞ

2P
iðHiK1 KHiÞ

2

 !
ð%Þ (21)

where bHi is the predicted, and Hi the observed stage

value on day i. The closer is the NSC value to 100%

the better are the predictions. Note that the NSC value

may be negative when the forecasts are worse than
the naive prediction (see denominator), which takes

the stage value of the actual day as the one-day

forecast. Table 2 lists the optimized model parameter

values. Optimization of the n, k, and ar values of the

proposed model was carried out by a systematic trial-

and-error search where trial values of the parameters

were chosen from ever-decreasing predefined ranges

of the parameters with ever-increasing corresponding

resolution terminating at a chosen set resolution.

Parameters of the nonlinear regression equation

(Eq. (15)) were obtained using the Matlab function

‘Nlinfit’ for the multivariate case, and the function

‘Polyfit’ for the univariate case, both by prescribing a

third-order polynomial.



Fig. 3. Rating curves used by the operative model.

Table 2

Optimized model parameter values for different stream reaches

Optimization period

Nagymaros–Budapest kZ11 (dayK1), nZ4, arZ0.2

Budapest–Dunaujvaros kZ6.8 (dayK1), nZ4, arZ0.2

Budapest–Paks kZ3.9 (dayK1), nZ4, arZ0.6

Paks–Baja kZ3.2 (dayK1), nZ2, arZ0.8

Baja–Mohacs kZ2.7 (dayK1), nZ1, arZ0.7

Tiszabercel–Tokaj kZ8.5 (dayK1), nZ1, arZ0.9

Sarospatak–Tokaj ktribZ1.5 (dayK1), ntribZ2

Arad–Mako kZ14.5 (dayK1), nZ7, arZ1

The subscript ‘trib’ refers to the tributary (Bodrog River) of the

Tisza.

J. Szilagyi et al. / Journal of Hydrology 311 (2005) 219–229 225
Fig. 4 displays the unscaled (i.e. before the

application of Eq. (15)) forecasts against observed

stages of the Danube at Baja. Application of assumed

linear rating curves instead of more realistic measured

ones (Fig. 3) causes the curvature of the best-fit

polynomial at large values. Such a systematic error,

however, can be easily corrected via Eq. (15). Fig. 5

displays the so-scaled forecasts, which now scatter

around the 1:1 line. Continuous error updating further

reduces this scatter (Fig. 6) resulting in the one-day

stage forecasts of Fig. 7 for the verification period.

Note that the first few forecast values may be off

mark, due to the spin-up period required for the output

values to adjust for the constant shift in the input stage

values between Eqs. (14a) and (14b) and due to the

fact that modeling starts with an arbitrary zero initial

value of the H vector. Consequently, the first four

forecast values were left out from all subsequent

analysis. Table 3 lists the performance statistics of the

one-day model predictions of both the operative and

the proposed models for the two distinct periods.

Based on Table 3 it can be stated that the proposed
model has stable optimized parameter values since

model performance deteriorates only slightly between

the two periods. During the verification period there

happened to be a major, but a relatively short-term

(several days) water release through a dam of the

Tisza downstream of Tokaj which contributed to a

large drop in model efficiencies between the periods.

In general, physically based models are expected to

have more stable parameters in time than so-called



Fig. 5. Observed stages at Baja (verification period) versus scaled one-day forecasts with no error updating.

Fig. 4. Observed stages at Baja versus unscaled one-day forecasts of the verification period.
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Fig. 6. Observed stages at Baja (verification period) versus scaled one-day forecasts with error updating.

Fig. 7. Observed stages at Paks and Baja (verification period) with the one-day forecasts shown.
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Table 3

Model performance statistics of the one-day ahead stage forecasts

Optimization period

Budapest sZ5.95(5.67) (cm), NSCZ94.21(94.75)%

Dunaujvaros sZ6.58(8.42) (cm), NSCZ92.15 (87.14)%

Paks sZ5.08(7.46) (cm), NSCZ92.67(91.96)%

Baja sZ6.92(5.68) (cm), NSCZ91.75(94.43)%

Mohacs sZ5.28(5.49) (cm), NSCZ94.34(93.90)%

Tokaj sZ6.23(8.53) (cm), NSCZ78.87(60.34)%

Mako sZ12.02(11.85) (cm), NSCZ66.79(67.72)%

Verification period

Budapest sZ8.11(7.83) (cm), NSCZ91.66(92.23)%

Dunaujvaros sZ8.59(9.88) (cm), NSCZ89.13(85.75)%

Paks sZ6.07(9.46) (cm), NSCZ95.70(89.55)%

Baja sZ7.69(7.87) (cm), NSCZ91.81(91.45)%

Mohacs sZ6.16(6.72) (cm), NSCZ93.79(92.61)%

Tokaj sZ9.72(17.57) (cm), NSCZ44.76(0)%

Mako sZ9.36(10.85) (cm), NSCZ64.01(51.49)%

The values in parentheses refer to the operative model.
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black-box models (Szöllősi-Nagy, 1989) and also

more accurate forecasts with increasing lead-times

(Szöllősi-Nagy, 1989; Szilagyi, 1992). Because the

former (may they be very simplified) give some

insight into the physical processes involved, temporal

changes in parameter values can often be linked to

changes in the channel or floodplain conditions, such

as conveyance. Also, model transferability of physi-

cally based models between gaged and ungaged

basins is typically better than that of black-box

models (Nash and Sutcliffe, 1970) simply because

model parameter values can be linked to measurable

basin properties. In our case, the ratio of optimized

values of n and k yields the mean travel time of flow

propagation for the given reach. Since this latter is a

function of channel properties mainly, initial guesses

of the n and k values for a new, ungaged stream can be

obtained by using such information only.

Overall, performance of the proposed model is very

similar to that of the operative model (Table 3). For

certain stations (Budapest, Baja, and Mako) the

operative model produces more accurate predictions

than the proposed model. This is what would normally

be expected, since the operative model uses extra

information (i.e. known rating curves) for flow routing.

One plausible explanation of why the proposed model

may perform better than the operative one for other

stations (Dunaujvaros, Paks, and Tokaj) can be that for

those stations the rating curves may not be accurate
enough or they may be outdated, i.e. they do not reflect

correctly the channel and flow conditions of the

modeled periods. Suboptimal parameter values

(which could stem from a higher number of parameters

to be optimized, i.e. 7 as opposed to 3) in the case of the

operative model might also explain its underperfor-

mance, but it is unlikely knowing that parameter values

of the operative model are updated each day using

information from the previous 90 days (Szilagyi,

1992). Here, it should be emphasized that the proposed

model is not meant for replacing models that use

measured rating-curve information. Whenever reliable

rating curves are available, a flow-rate formulation, i.e.

Eq. (7a), should always be preferred over a stage

formulation, Eq. (14b). However, an additional (on top

of flow rates) flow routing using stages only, can detect

inadequacies in the data required by the former.

Naturally, when no information of rating curves is

available, the proposed model (or its variant, such as

the multilinear formulation) may easily be a proper

candidate of a physically based model to apply.

Szilagyi (2004) provides an exhaustive list of the

advantages of applying a state-space approach of flow

routing over a numerical solution of Eq. (1) or (9)

beyond the already-mentioned properties that flow

routing is a lumped parameter approach while the

kinematic and diffusion wave equations are distributed

ones.
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