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Summary Riparian vegetation typically has a great influence on groundwater level and
groundwater-sustained stream baseflow. By modifying the well-known method by White
[White, W.N., 1932. Method of estimating groundwater supplies based on discharge by
plants and evaporation from soil – results of investigation in Escalante Valley, Utah – US
Geological Survey. Water Supply Paper 659-A, 1–105] an empirical and hydraulic version
of a new technique were developed to calculate evapotranspiration (ET) from groundwater
level readings in the riparian zone. The method was tested with hydrometeorological data
from the Hidegvı́z Valley experimental catchment, located in the Sopron Hills region at the
western border of Hungary. ET rates of the proposed method lag behind those of the Pen-
man–Monteith method but otherwise the two estimates compare favorably for the day. At
nights, the new technique yields more realistic values than the Penman–Monteith equa-
tion. On a daily basis the newly-derived ET rates are typically 50% higher than the ones
obtainable with the original White method. Sensitivity analysis showed that the more reli-
able hydraulic version of our ET estimation technique is most sensitive (i.e., linearly) to the
laboratory- and/or slug-test derived values of the saturated hydraulic conductivity and
specific yield taken from the riparian zone.
ª 2007 Elsevier B.V. All rights reserved.

Introduction

The diurnal cycle of the climate forcing, such as tempera-
ture, solar radiation, and humidity often induces a similar
daily fluctuation in the groundwater level of the riparian
zone and, especially during drought periods, in the flow rate
of the adjacent low-order stream through the mediation of
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the riparian vegetation. This vegetation effect on the
groundwater levels and baseflow rates occurs as a result
of a daily rhythm in the metabolism of the vegetation mod-
ulated by phenological changes through the seasons. Meta-
bolic changes in the vegetation are accompanied by
similar changes in transpiration rates. In riparian forests of
dense cover, soil evaporation during drought periods is of-
ten negligible in comparison with the transpiration rates
of vegetation. Several authors have investigated the linkage
between riparian transpiration and streamflow rates (Trox-
ell, 1936; Croft, 1948; Tschinkel, 1963; Reigner, 1966;
Pörtge, 1996; Lundquist and Cayan, 2002; Loheide et al.,
2005; Butler et al., 2007; Boronina et al., 2005) but only a
few attempted to estimate the evapotranspiration (ET) rate

of the riparian zone (White, 1932; Bond et al., 2002; Bauer
et al., 2004; Nachabe et al., 2005) by using of the observed
streamflow, groundwater or soil moisture fluctuations or to
provide an analytical description of these signals (Czikow-
sky, 2003; Czikowsky and Fitzjarrald, 2004).

A typically observable diurnal pattern in groundwater le-
vel and streamflow rate is displayed in Fig. 1 for a forested
riparian zone in western Hungary. The maxima occur in the
morning hours, between 6 and 8 a.m., and the minima in the
afternoon, between 4 and 5 p.m. (Gribovszki et al., 2006).
Both signals are characterized by sharp lower extrema,
but the peak regions of the streamflow signal are more
rounded. Notably the two extrema do not overlap perfectly
in time, the groundwater extrema lag behind those of the
streamflow rate by about 1–1.5 h. To our best knowledge
no such lag has ever been reported in the literature before.
In an accompanying paper by Szilágyi et al. (2007) to this
present work the problem is further investigated.

The transpiration demand of the vegetation is generally
met by the soil moisture of the riparian zone and/or directly
by the groundwater. In drought periods the groundwater of
the riparian zone used by evapotranspiration is typically
replenished via groundwater flow from areas farther away
from the stream (Fig. 2) or by so-called induced recharge,
when, due to a reversed hydraulic gradient, the groundwa-
ter flow is directed from the channel toward the riparian
zone. Around the timing of the groundwater level extrema,
supply, Qnet [LT

�1], and demand, ET [LT�1], are in an equi-
librium in Eq. (1)

dS

dt
¼ Q net � ET ð1Þ
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Figure 1 Observed diurnal fluctuations in riparian groundwa-
ter level and baseflow values.

Figure 2 Schematic model of the riparian zone.
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where S [L] is the stored water volume per unit area. Around
the extrema dS/dt = 0, dS/dt > 0 and Qnet > ET on the rising
limb and dS/dt < 0 and Qnet < ET on the falling limb of the
groundwater hydrograph. The ET rate is largest during the
day when the groundwater level curve is about the steepest
on the descending limb, which is typically close to the radi-
ation maxima. The smallest ET rate however does not nec-
essarily take place when the ascending limb of the
groundwater level signal is the steepest, rather, just prior
to dawn when vapor pressure deficit is at its diurnal mini-
mum. The minima in the riparian zone groundwater level
is accompanied by the steepest hydraulic gradients, so when
ET starts to decrease, the steep hydraulic gradient can de-
liver water to the riparian zone very efficiently, replenishing
it fastest right after the occurrence of the groundwater le-
vel minimum, thus somewhat (but not entirely) independent
of the actual ET rate, at least for a while (for more detail,
see the accompanying paper by Szilágyi et al., 2007). This
mechanism is especially true in valley settings (Fig. 2),
where farther away from the stream the groundwater level
is deeper below the surface, thus, being less affected by the
diurnal fluctuations in the transpiration rate of vegetation.

White (1932) published a method of estimating riparian
ET rates on a daily time step based on fluctuations in the
groundwater level. He assumed that during the predawn/
dawn hours when ET is negligible, the rate of the observed
groundwater level increase is directly proportional to the
rate groundwater is supplied to the riparian zone from the
neighboring areas. The slope, r [LT�1], of the tangential line
drawn to the groundwater level curve in these sections
(Fig. 3), multiplied by specific yield value, Sy [–], of the
riparian zone, therefore, represents the rate of water sup-
ply to a unit area. By extending the tangential line over a
24-h period and taking the difference in groundwater levels,
one would obtain an estimate of the total water supply to
the unit area over a day. The so-obtained daily rate of water
supply must typically be modified by s [L], the difference in
the observed groundwater level over the 24-h period, since
it rarely happens that the groundwater level returns to the
same elevation a day before. The daily ET rate this way is
obtained as

ET ¼ Syð24r � sÞ ð2Þ

where r is the mean hourly rate of groundwater level in-
crease from midnight to 4 a.m.

Meyboom (1964) suggested a 50% reduction (which he
called the readily available specific yield) of the labora-
tory-derived specific yield value in Eq. (2). A reduction is
certainly justified since it takes some time for the drainage
to adjust to any new conditions introduced depending on
such variables as soil-aquifer type, the thickness of the va-
dose zone, as well as aquifer and stream geometry (e.g.,
Szilágyi, 2004).

Based on the study of Nachabe (2002), Loheide et al.
(2005) suggested certain guidelines and an equation to ob-
tain Sy as a function of sediment texture, depth to the
groundwater table and elapsed time (t) of the drainage.
The relationship is based on the Brooks and Corey (1964)
model that gives the volumetric water content (h) as

hðWÞ ¼ hR þ ðhS � hRÞ
ha

W

� �k

ð3Þ

where ha [L] is the air entry pressure, W [L] is the pressure/
suction head, k [–] is the pore-size index, hS [–] is the total
porosity, and hR [–] is the residual water content. With the
help of Eq. (3) Sy becomes

SyðtÞ ¼
Kt

Dh
hB � hR

hS � hR

� �2þ3k
k hSurface � hR

hS � hR

� �2þ3k
k

" #

þ ðhS � hRÞ 1� hB � hR

hS � hR

� �
ð4Þ

where K [LT�1] is the saturated hydraulic conductivity of
the soil, Dh is the change in the groundwater surface
position over time t, and hSurface is the actual water content
at the surface, which will depend on the actual depth to the
groundwater table. hB [–] is an additional parameter of the
water content profile defined as

hBðtÞ ¼ hR þ ðhS � hRÞ
DhðhS � hRÞ

2þ3k
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2þ3k

k
�1

t
1

1�2þ3k
k ð5Þ

Here K is calculated with the help of the Kozeny–Carman
relationship as KS ¼ Bhn

e, where he is the effective porosity
(i.e., total porosity minus the water content at a pressure
head of �33 kPa) and B [LT�1] and n [–] are empirical
parameters. When K is in cm h�1 then n and B obtain values
of 4 and 1058, respectively.

Loheide et al. (2005) demonstrated via numerical model-
ing experiments that the ET rate given by the White method
is not influenced perceptably by the geometry of the vadose
zone. Although the White method yields reasonable esti-
mates of daily ET, provided an appropriate Sy value is em-
ployed Loheide et al. (2005), it has a weak point. Namely,
it assumes that water supply to the riparian zone would hap-
pen at a constant rate, observable when ET is negligible
(Fig. 3), over the day. As mentioned earlier, this is hardly
the case since the hydraulic gradient changes over the
course of the day as the riparian zone groundwater level
fluctuates. This fluctuation causes a time-varying water sup-
ply to the area, since, especially in a valley setting with pre-
dominantly horizontal groundwater flow, groundwater
levels farther away from the stream (i.e., beyond the ripar-
ian zone where depth to the groundwater is larger) typically
express much diminished diurnal fluctuations (Fig. 2), thus
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Figure 3 The basic principle of the original White method.
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causing diurnally varying hydraulic gradients between the
valley-side and the riparian zone. The same head fluctua-
tions may be true for a deep aquifer case with mainly verti-
cal flow in the riparian zone.

While the White method (and its modification presented
below) aims to describe storage changes within the satu-
rated zone only, implicitly it accounts (at least partially)
for moisture withdrawal (depending on the depth of the
water table) from the vadose zone as well. Vadose zone
ET does not come solely from the vadose zone soil moisture
because this soil moisture always has a close hydraulic con-
nection with the groundwater table through the capillary
fringe, therefore it is indirectly included in the water bal-
ance of the groundwater system. Loheide et al. (2005) dem-
onstrated via numerical experiments that water extracted
from a 1-m-thick vadose zone shows up in the ET estimates
of the White method so that it accounts for 19–23–28%
(i.e., for silt, loam, and medium sand, respectively) of the
total vadose zone water extraction. This however should
not be surprising since moisture extraction from the vadose
zone can depress the groundwater table due to a reversed
hydraulic gradient.

Shah et al. (2007) performed numerical simulations to
partition total ET into vadose zone and groundwater ET.
They found that for a water table within half meter of the
land surface, nearly all ET came from the groundwater
due to the close hydraulic connection between the unsatu-
rated and saturated zones. Depending on the soil type, they
also reported a decoupling of the groundwater and unsatu-
rated zone moisture dynamics starting at water table depths
between 0.3 and 1.0 m for deep-rooted vegetation.

Hydraulic theory-based modification of the
White method for riparian zone ET estimation

Since drought period water supply to the riparian zone is
typically regulated by the hydraulic gradients between the
background (i.e., away from the stream and the riparian
zone) and the area in question, as well as between the same
area and the stream, it must be included in the ET estima-
tion method. The lumped version of the mass-conservation
equation Eq. (1), can also be written as

dS

dt
¼ Sy

dh

dt
¼ Q net � ET ð6Þ

where h [L] is the groundwater elevation within the control
(unit) area. The net water supply, Qnet, is defined as the dif-
ference between in- (Qin) and outflows (Qout) to it. The lat-
ter flow rates (assuming mainly horizontal flow) are
formulated by Darcy’s equation using the Dupuit approxima-
tion (Harr, 1962; Kovács, 1972)

Q net ¼ Q in � Q out ¼
kðH2 � h2Þ
2d1ðL� lÞ �

k h2 � h2
0

� �
2d1l

ð7aÞ

Here H [L] is the groundwater elevation in the background
(where diurnal fluctuations are not apparent) at a distance
L [L] from the stream, l [L] is the distance from the control
area to the stream, h0 [L] is the water level in the stream
(Fig. 2), k [LT�1] is the (preferably slug-test derived) satu-
rated hydraulic conductivity of the soil-aquifer system,
and d1 [L] is the unit distance along the stream. H, h and

h0 are taken relative to an assumed horizontal impervious
layer (Fig. 2) not necessarily at the streambed elevation.
Note that the above formulation of Eq. (7a) assumes succes-
sive steady-state conditions at each time step of the Qnet

calculations, which is not strictly true.
When the flow is mainly vertical in the riparian zone

(i.e., deep aquifer case) Eq. (7a) can be substituted by
Darcy’s equation

Q net ¼ kv
H � h

l0
ð7bÞ

where H now is the total (‘background’) head at a depth of l 0

below the reference level, and kv is the saturated hydraulic
conductivity value for vertical flow.

Before the application of the hydraulic theory, one has to
decide about the location at which the groundwater levels
must be observed and its temporal derivatives be com-
puted. As Bauer et al. (2004) and Loheide et al. (2005) dem-
onstrated, the middle part of the riparian zone expresses
the least spatial variations and represents average condi-
tions as long as the riparian zone vegetation is fairly homo-
geneous. They also note that boundary-condition effects
(such as a heavily damped signal of diurnal groundwater le-
vel fluctuations near the channel) typically die out within a
few meters from the stream.

This way the steps of the suggested new ET estimation
approach are the following. First the groundwater level re-
cord is differenced in time (half-hourly or hourly time steps
are convenient) to obtain dh/dt. This new time-series
(Fig. 4) can be assumed to be directly proportional to the
difference between water supply (Qnet) and demand (ET)
over the riparian zone. Qnet is derived next in two different
ways: as an empirical, and as a hydraulic approach.

In the empirical approach the maximum of Qnet for each
day was calculated by selecting the largest positive time-
rate of change value in the groundwater level readings such
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as Qnet � Sy dh/dt, while the minimum was obtained by cal-
culating the mean of the smallest time-rate of change in h
taken in the predawn/dawn hours. The averaging is neces-
sary in order to minimize the relatively large role of mea-
surement error when the changes are small. The resulting
values of the Qnet extrema in Fig. 4 then were assigned to
those temporal locations where the groundwater level ex-
trema took place. It was followed by a spline interpolation
of the Qnet values to derive intermediate values between
the specified extrema. Most probably the resulting empirical
maxima are somewhat smaller than the corresponding ac-
tual maximum supply rates by virtue of the ET term being
unaccounted for in Eq. (6) in this empirical method. At
the same time, the estimated minima are somewhat larger
than the actual minimum supply rates, due to the necessary
averaging and due to observational evidence that groundwa-
ter levels reach their maxima somewhat later, i.e., between
6 and 8 a.m. in the summer. However, the dh/dt values of
this period (i.e., between 6 and 8 a.m.) should not be used
because by that time ET may have already become signifi-
cant, thus leading to increased dh/dt rates, groundwater le-
vel values not affected by ET were chosen from the
predawn/dawn hours for analysis.

The hydraulic approach estimates Qnet from Eqs. (6) and
(7a) or (7b). In case of a predominantly horizontal flow the
k, h, and l values are typically known from measurements,
but the values of H and L need to be determined. The latter
distance is largely determined by the width of the riparian
zone. In case of a predominantly vertical flow situation
(i.e., deep aquifer case) the kv and h values are known typ-
ically from measurements, but the values of H and l 0 may be

estimated again. In lieu of measurements, l 0 can be taken
equal to the thickness of the aquifer below the stream.

The corresponding H values can then be obtained from
Eq. (6) in combination of Eq. (7a) or (7b), realizing that in
the predawn/dawn hours ET is close to zero in Eq. (6), as

H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðL� lÞ Syd1

k

dh

dt
þ h2 � h2

0

2l

 !
þ h2

vuut ð8aÞ

H ¼ Sy
kv

dh

dt
l0 þ h ð8bÞ

which, thus, yields an estimate for the ‘background’
groundwater elevation/head each day. Note that during a
drought period even this background groundwater elevation
changes from day-to-day along a typically slow recession
curve (Fig. 4) for the horizontal flow scenario. Similar slow
changes can be expected for H in the deep aquifer case as
well. To obtain intermediate H values, again a spline inter-
polation was employed in Fig. 4. The subsequent Qnet values
over the day are then obtained from Eq. (7a) or (7b) by mak-
ing use of the interpolated H values. In the present study it
was possible to check the accuracy of the H estimates by
comparing them to well readings along the valley slope
(Fig. 5), and a good agreement was found with Eq. (8a).

If one has information of the groundwater flow direction
within the riparian zone, which often times deviates signif-
icantly from a direction perpendicular to the stream, then
the l and L distances must be taken along that direction
of the groundwater flow. This situation is investigated in
more detail later during the sensitivity test of the method.

Figure 5 The experimental catchment and the location of the groundwater wells as well as the micrometeorological station
employed in the study.
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Finally, the ET rates, characteristic of the riparian zone,
can be obtained by rearranging Eq. (6) as

ET ¼ Q net � Sy
dh

dt
ð9Þ

For the present ET estimation method the importance of a
continuous record of high accuracy groundwater level mea-
surements at a high temporal resolution cannot be stressed
enough because differentiation of the groundwater level re-
cord may invoke large errors in the resulting ET estimation
whenever the original groundwater level measurements
are inaccurate. In order to reduce this uncertainty, the
application of a low-pass numerical filter (smoother) is rec-
ommended. Care must however be taken not to oversmooth
the data because it can lead to loosing important details
about the nature of the diurnal fluctuations. A recom-
mended approach is to collect measurements at the largest
possible frequency and apply a filter accordingly. For exam-
ple, if one would like to use 30-min data for analysis then
the sampling interval should be at least 10 min.

Application of the ET estimation method to a
small experimental catchment in Hungary

Both the empirical and hydraulic versions of the proposed
ET estimation method were tested at a small (drainage area
is 6 km2) experimental watershed (Fig. 5) in the Sopron Hills
of western Hungary.

The geology of the catchment is made up of strongly
unclassified crystalline bedrock deposited in the tertiary
(Miocene) period, along with fluvial sediments deposited
in five distinct layers. On the surface only the two upper
layers of the latter appear. Over the slopes and hilltops
the so-called Fels}otödl Gravel Formation is found in a
10–50 m-thick layer. This layer contains coarse gravel and
fine loam as well, so it is strongly unclassified. In the valley
bottoms, a finer-grained layer, the Magasbérc Sand Forma-
tion appears, which is a good aquifer, giving rise to peren-
nial streams (Kisházi and Ivancsics, 1985).

The riparian zone vegetation in the valleys is a typical
phreatophyte intrazonal ecosystem dominated by alder (Al-
nus glutinosa (L.) Gaertn.). The mean height of the young-
to middle-aged riparian forest stand is about 15 m with a
mean trunk diameter (at a height of 1.3 m) of 13 cm. Leaf
area index (LAI) of this forest stand was 7.4.

The area enjoys a sub-alpine climate, with daily mean
temperatures of 17 �C in the summer, and 0 �C in the win-
ter, and with an annual precipitation of 750 mm, late spring
and early summer being the wettest and fall the driest sea-
sons (Danszky, 1963; Marosi and Somogyi, 1990).

The depth to the groundwater in the riparian zone varies
between 60 to 90 cm during typical drought periods. Conse-
quently, the root system of the trees is in direct contact
with the saturated zone, or at least the capillary fringe
throughout the year. Following Shah et al. (2007), the
decoupling of the groundwater dynamics from the vadose
zone in the soil of our experimental site was found to start
at a depth of 0.8–0.9 m, therefore almost all year long the
total ET is very close to groundwater ET.

The groundwater measurements for the study took place
at the north-eastern corner of the catchment in a well de-
noted by 2+ in Fig. 5, situated in the middle of an approxi-
mately 20-m wide riparian zone of the west bank of the
stream. Groundwater levels (h) in that well were recorded
by a pressure transducer at a 10-min sampling interval and
with an accuracy of 1 mm. The well was dug with an 80-
mm drill. The PVC well casing has a diameter of 63 mm,
screened at the bottom 1 m, starting 25 cm below the sur-
face. The space between the casing and the wall of the
borehole is filled with coarse sand.

The parameter values derived for the study are listed in
Table 1. The values of H were calculated by Eq. (8a) as a
function of the measured h values in the well. For each
day, the Sy values were estimated by Eqs. (3)–(5) based
on the groundwater extrema values and the elapsed time
between them. The required Brooks and Corey model
parameter values in Table 1 were obtained by the help of
laboratory-derived water-retention curves using samples ta-
ken from the location of the well. The parameter values of
Eq. (3) were then adjusted by trial-and-error until a favor-
able match was obtained with the sample retention curves.
In the calculation of the Sy value no hysteresis effect could
be taken into consideration because we had only the drying
curve of the soil water characteristics. The effective poros-
ity value (he) required by the Kozeny–Carman equation was
also derived from the laboratory samples. As a result, Sy
changed between 0.039 and 0.103, with a median value of
0.071, in the study period. Note that the Kozeny–Carman
equation, when employing laboratory samples, yielded a
saturated hydraulic conductivity value (K = 2 Æ 10�7 m s�1)
which is a magnitude smaller than the slug-test derived val-
ues in Table 2. This is not surprising considering the increas-
ing importance of preferential flow with growing scale (e.g.,
Brutsaert and Nieber, 1977; Szilágyi et al., 1998).

Representative drought periods for the analysis were
chosen from 2005. The ET estimates produced by the cur-
rent method were compared with those of the Penman–
Monteith method (Allen et al., 1998) at a 30-min resolution,
and of the original White method, Eq. (2), on a daily basis.
Although the present method calculates mainly

Table 1 Study site parameters for the ET calculations

ka (m/s) l (m) L (m) h0 (m) k (–) hS (–) hR (–) he (–) Bb nb (–)

Employed (median) value 1.8 Æ 10�5 9.4 40 0.23 0.32 0.379 0.035 0.091 2.94 Æ 10�3 4
Observed range 1.1 Æ 10�6 � 2.9 Æ 10�4 – – – – – – – – –
a Determined from 16 slug-tests (Schwartz and Zhang (2003)) and validated by inverse modeling (Kovács and Szanyi (2005)) against

groundwater level readings of the surrounding piezometer nest.
b From Maidment (1993) (m/s).

Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations 11
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groundwater ET, the estimated ET values are very close to
total ET rates obtained by the Penman–Monteith equation.

Hughes et al. (2001) found the Penman–Monteith
method to be one of the most reliable in estimating evapo-
transpiration from densely vegetated surfaces. The
Penman–Monteith method derives ET as

ET ¼ DðR0 � SÞ þ qcpVPDr
�1
a

Lv½Dþ cð1þ rcr�1a Þ�
ð10Þ

where the Penman–Monteith ET is in mm day�1, Lv, is the
latent heat of vaporization (MJ kg�1), D is the slope of the
saturation vapour pressure curve (kPa �C�1), c is the psy-
chrometric constant (kPa �C�1), R0 is the net radiation
(MJ m�2 day�1), VPD is the vapour pressure deficit (kPa), S
is the soil heat flux and temporary storage of energy into
the tree itself (MJ m�2 day�1), q is the air density (kg m�3),
cp is the specific heat of moist air (kJ kg�1 �C�1), ra is the
aerodynamic resistance (s m�1), and rc is the bulk canopy
resistance (s m�1).

Data required by the Penman–Monteith method were ob-
tained from a micrometeorological station which, however,
is not situated in the valley but rather on a hillslope, 1.9 km
to the south from the riparian zone studied (Fig. 5). Because
the tree canopy is 10–15 m above the ground in the study
catchment, soil heat flux contributions to the available en-
ergy for the canopy were considered negligible. The tempo-
rary storage of energy into the tree trunks and limbs was
estimated at 5% of the solar radiation (Goodrich et al.,
2000). Goodrich et al. (2000) also recommend to employ a
high rc value (i.e., 5000 s m�1) for the nighttime period so
as to extinguish ET at night. But this probably is not realistic
because nocturnal sap flow measurements indicate that
nighttime ET could be as high as 10–25% of the daily totals
(Gazal et al., 2006). As a consequence, positive ET values

during the night, as our estimates suggest (Figs. 6 and 7),
can be quite realistic. Seasonal changes in the rc value were
calculated based on LAI measurements (rc = 200/ LAI [Allen
et al., 1998]) over the growing season, and here it was also
assumed Goodrich et al. (2000) that before foliation and
after defoliation rc = 1000 s m�1.

Note that the Penman–Monteith ET values maybe signif-
icantly different from the riparian ET estimates for objec-
tive reasons and not only for possible deficiencies in the
proposed method because the meteorological tower is at a
considerable distance from the riparian zone and has a sig-
nificantly more exposed location on a hillslope. The PM
method estimates total ET (i.e., groundwater plus vadose
zone ET) and not only the portion of ET that derives from
the groundwater. Furthermore, groundwater and soil mois-
ture conditions maybe quite different on a hillslope where
the tower is located from the ones characteristic of the
riparian zone within a valley setting. All said, the Pen-
man–Monteith estimates still represent ‘‘real-world’’ ET
values for a well-watered vegetation that can be used as a
bench-mark to compare the estimates of the proposed
method with.

In the 2005 growing season (May–October) there were
altogether 100 days (Fig. 6) that could be included in the
analysis. Days with less than 2–3 mm of precipitation did
not present any problem for the ET estimation because
these light rain events cannot produce any measurable
groundwater recharge due to the high interception losses
characteristic of these forests. In a prolonged (i.e., longer
than 5 days) drought period even a 5 mm rain (e.g., May
30, July 25, and September 26 in Fig. 6) will not disturb
the present ET estimation method, however, a mere 3 mm
of rain can affect it if it takes place not long after a previous
larger precipitation event. Large rain events can affect the

Table 2 Sensitivity analysis of the ET estimates to parameter values of the methods applied for the growing season of 2005

Methods and parameters May June July August September October

ET (mm/day)

Penman–Monteith (PM) 6.41 6.04 11.13 7.56 7.34 2.84
1.2 Æ PM 7.69 7.25 13.36 9.07 8.81 3.41
Original White method 5.44 5.51 6.81 5.78 5.21 2.37
Empirical method 6.49 7.97 11.33 9.42 8.74 3.12
h0 = 0.07 m, d0 = 0 m, median k 6.26 7.05 8.56 8.05 7.24 2.73
h0 = 0.57 m, d0 = 0.5 m, median k 7.06 8.52 11.39 10.31 9.72 3.38
h0 = d0 = 0.5 m, median k 7.06 8.52 11.39 10.31 9.72 3.38
h0 = 0.7 m, d0 = 0.5 m, median k 7.06 8.52 11.39 10.31 9.72 3.38
h0 = 0.37 m, d0 = 0.3 m, median k 6.76 7.86 10.49 9.34 8.61 3.15
Flow direction 40� to the stream, h0 = �0.03 m, l = 14.6 m, d0 = 0.5 ma,
median k (probably close to reality)

6.70 7.82 10.14 9.28 8.52 3.05

Flow direction 40� to the stream, h0 = �0.23 m, l = 14.6 m, d0 = 0.5 ma,
median k (likely steeper streambed gradient than reality)

6.70 7.82 10.14 9.28 8.52 3.05

L = 20 m, h0 = d0 = 0.3 m 7.26 8.85 12.19 10.74 10.24 3.61
L = 110 m, h0 = d0 = 0.3 m 6.60 7.55 9.93 8.87 8.07 2.99
k = 1.1 Æ 10�6 m/s (minimum), h0 = d0 = 0.3 m 6.18 6.41 7.85 7.34 6.31 2.43
k = 2.9 Æ 10�4 m/s (maximum), h0 = d0 = 0.3 m 29.58 47.92 78.61 62.07 67.16 20.66

For median k value see Table 1. d0 means the depth to datum under the streambed.
a Here the d0 and h0 values are related to different cross-sections of the stream due to the downstream component of the groundwater

flow path. When the reference level is taken at d0 = 0.5 m below the streambed at the stream cross-section closest to the well, the
streambed (therefore the stream-water level, h0) may drop below that reference level downstream where the groundwater flow path
intersects the stream.
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present ET estimation method for up to 2 days, so those
periods were excluded from the analysis. It was observed
that the empirical version of the present method is more
sensitive to the disturbing effects of precipitation than
the hydraulic one, as well as to periods with little diurnal
change in the groundwater levels. While the hydraulic ver-
sion functioned well even in these periods, for the sake of
comparison between the two versions, such days were ex-
cluded from the subsequent analysis. In addition, a two-
week period at the end of June was also excluded from
the analysis due to instrumentation problems.

Results and discussion

Thirty-minutes ET estimates by the present method are
compared with the Penman–Monteith estimates in Fig. 7.
The former yields higher ET rates during the nights, as ex-
plained above, so for comparison, only the daily values
should be considered.

Cross-correlation analysis of the 30-min ET values be-
tween the Penman–Monteith and the present method show
a peak (r = 0.85–0.93) generally at a separation distance of
60–90 min (larger lag time typical at the start and even at
the end of the vegetation period) with the new method’s
values lagging behind those of the Penman–Monteith ap-
proach. Extra long (180 min) lags can be detected in the
beginning of May, in the middle and end of October.
60–90 min lags can also be found between the groundwater
level and discharge response to increased or decreased
ET demand, therefore a difference between the local and
overall hydraulic gradients can cause the lag, as it is
explained in the accompanying paper by Szilágyi et al.
(2007). On the other hand, the lag can be the consequence
of the delayed water transport mechanism in the trees be-
cause the trunk of the trees can store a relatively high

amount of water, and this storage capacity allows some dif-
ference between the time of the transpiration and absorp-
tion of water from the soil. In consequence, the smaller
the water transport (i.e., ET) compared to the stored
amount of water in the trees and/or the harder it is to ab-
sorb moisture from a drying soil, the larger the lag.

The hydraulic version of the new method occasionally
yields zero or negative ET values in the evening hours (7–
9 p.m.) in summer period when the groundwater level
bounces back fast after intensive mid-day ET rates. This oc-
curs because the groundwater flow is described by three
control points, out of which only one is located strictly with-
in the riparian zone (the other one is at the bank of the
stream, while the third one [the background value] is out-
side the domain ET exerts its diurnal influence upon). During
fast groundwater recovery, following intensive ET rates in
the riparian zone the dS/dt term in Eq. (6) is positive but oc-
curs with a negative sign when obtaining the ET value, thus
if the groundwater supply rate to the area is underestimated
as a result of the too few control points then the resulting
ET rate will become negative. This kind of error typically
happens at the end of extended drought periods of the
summer.

Fig. 8 displays the estimated ET rates on a daily basis, ob-
tained by summing the 30-min values over the days. Both
versions of the proposed method yield significantly larger
daily rates than the original White approach. These differ-
ences (as percentage of the White method’s monthly value)
from May to October, are 24, 43, 54, 62, 65, 33 for the
hydraulic and 19, 45, 66, 63, 68, 32 for the empirical ver-
sions, respectively. The explanation lies in the different
assumptions the two methods employ. The original White
approach assumes a constant rate of groundwater supply
to the riparian zone throughout the day estimated when
ET is close to zero in the predawn/dawn hours, when the
supply rate is diminished due to a deflated hydraulic gradi-
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Figure 6 Precipitation, groundwater level measurements and calculated ET rates for the 2005 growing season.
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ent. In contrast, the proposed method accounts for (even if
sometime incorrectly) this diurnal change in the hydraulic
gradient which has a maximum when ET is most intensive
(in fact, a bit later due to the earlier mentioned delay in
the groundwater response to changes in ET rates) and min-
imum in the morning hours.

Loheide et al. (2005) concluded in their numerical study
that the White method gave reliable riparian zone ET esti-
mates. However, the ET rates they applied in their model
were rather small (1 mm d�1), in fact, almost a magnitude
smaller than what was observed in our experimental catch-
ment in Hungary, therefore leading to relatively small diur-
nal groundwater level fluctuations (<1.5 cm), which thus
would not cause a significant change in the overall hydraulic
gradients throughout the day. Indeed, with such low ET
rates there is hardly any difference in the estimates
between the original White approach and our proposed
method. However, when the daily ET rate (estimated by
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the Penman–Monteith method) is about 10 mm a day, as in
our experimental watershed, the difference between the
two methods is significant.

Finally, Fig. 9 displays the estimated daily mean ET rates
by month. Note that these values account predominantly for
dry days only. The largest difference between the methods
is found in July when ET rates and, thus, groundwater
dynamics are most intensive. And conversely, the different
methods give the most uniform ET estimates in May and
October when the amplitude of the diurnal ET fluctuation
is typically small, thus leading to limited diurnal changes
in the overall hydraulic gradients within the riparian zone.

Among the two versions of the present ET method, the
hydraulic approach yields higher ET estimates in the
damped diurnal ET amplitude months (May and October),
while in the intervening period the empirical approach
produces the larger ET estimates. The reason lies in the
above-mentioned property of the hydraulic version of
underestimating high groundwater supply rates to the ripar-
ian zone. Even with this known error in the hydraulic
version, it probably produces more reliable ET estimates
within the day than the empirical one, because (a) the
shape of its ET-curve is closer to the shape of the Pen-
man–Monteith derived diurnal ET signal, and; (b) its net
inflow values in Fig. 4 reproduce better the time-rate of
change in groundwater levels through time, and so are prob-
ably closer to reality, than those of the empirical one, which
come from a curve fitting of a spline interpolation method,
thus are somewhat detached from physical reality between
the measurements. The empirical method on the other
hand, is more suitable for defining a lower limit (>0) for
the ET rate (see its description above), thus it can help in
calibrating the hydraulic version.

In comparison of the present ET estimates (3.2–
10.5 mm d�1) with other study results, it can be stated that
these values typically represent the high-end values of those
estimates. For example, Tóth (2007), based on groundwater
level readings of piezometer nests, found summer riparian
ET rates of 2–12 mm d�1 for the same experimental catch-
ment in a very shallow groundwater environment (ground-
water depths were between 0.2 and 1.3 m from the
surface, therefore the calculated ground water ET fraction

is very close to the total ET rate). Around the world, apply-
ing different measurement and estimation techniques,
Bauer et al. (2004) obtained riparian ET rates of 0.06–
4.3 mm d�1 for mixed (trees, shrub, and grasses) vegetation
of variable density in Botswana, where continuous ground-
water level readings of piezometers were used for the esti-
mates (groundwater depths varied between 2 and 3 m from
the surface, therefore the calculated groundwater ET frac-
tion may be comparable to vadose zone ET). Butler et al.
(2007) obtained ET rates of 2.9–9.3 mm d�1 also for mixed
vegetation type based on continuous groundwater level
readings (groundwater depths were between 0.3 and 3.4 m
from the surface, therefore calculated groundwater ET
rates were close to total ET when groundwater levels were
close to the surface and were smaller than total ET when
groundwater levels were deeper). Nachabe et al. (2005) cal-
culated monthly average total ET rates of 1.5–3.5 mm d�1

for a pasture and 1.5–6.3 mm d�1 for a low-lying forest with
the help of continuous soil moisture profile measurements
in Florida. Gazal et al. (2006) found 2–7 mm d�1 for a semi-
arid cottonwood forest; Goodrich et al. (2000) obtained 4–
8 mm d�1 also for mixed vegetation, while Hughes et al.
(2001) found 2–6 mm d�1 for a temperate salt marsh in Aus-
tralia. For the last three experiments sap flow measure-
ments and micrometeorological methods were used for
calculating total ET. Unfortunately, important vegetation
characteristics (such as LAI) cannot always be deduced from
these studies. Notwithstanding, the present riparian ET esti-
mation method seems to yield realistic values, especially,
when one considers the ready access of vegetation to the
groundwater, the abundance of available energy in the
growing season considered, as well as a large value of LAI,
all combined with a favorable match with the Penman–Mon-
teith ET values as control.

Sensitivity analysis of the hydraulic method can be sum-
marized (Table 2) as follows. (a) The method is least sensi-
tive to the value of h0, i.e., the water-level in the stream.
Between the two extremes of h0 = 0 m and h0 = 0.2 m (flood
level), assuming the reference level is at the channel-bed
elevation of the stream, the resulting daily ET values dif-
fered only in the third decimals. Thus any effect of diurnal
fluctuation in the stream level (which was less than 1 cm in
this catchment) to the ET estimate is negligible. (b) The
method is only slightly sensitive to the choice of the L
parameter. Even an about 5-fold change in its value af-
fected the daily ET estimates by a mere 20%. (c) The meth-
od is moderately sensitive to the elevation of the datum.
With every 0.1 m lowering of the datum (within the 0–
0.5 m interval, which seems realistic in our case), the daily
ET estimates increased by only 3–5%. (d) The method is sim-
ilarly sensitive to the angle formed by the main groundwater
flow direction and the stream. Based on simultaneous read-
ings of well-water levels, this angle in the study catchment
is about 40� downstream. Accounting for this, mainly by the
enlarged value of l, lead to a 5–14% decrease in the daily ET
values. (e) Finally, the ET estimates depend most strongly,
i.e., linearly (see Eqs. (7a), (7b) and (9) on the values of the
specific yield, Sy, and the saturated hydraulic conductivity,
k. Thus, the key of reliable ET-rate estimates with the pres-
ent method lies in the accuracy of the estimated field-scale
values of the hydraulic parameters, k and Sy. The observed
changes in the ET estimates during the sensitivity analysis,
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reported in Table 2, occurred more markedly during the
period of intensive ET and groundwater dynamics (July–
September), and less so in May and October.

In summary the following can be stated. The current ET
estimation method is a modified version of the original
White method (1932). It considers the growing season diur-
nal fluctuations of the riparian zone groundwater levels and
can fairly well estimate the daily ET rates from high fre-
quency samples (10-min or finer) of the groundwater level
in a single well. Interestingly, the sub-daily ET-rate esti-
mates are typically delayed by a few hours in comparison
with Penman–Monteith derived ET values. The new method
has two versions (i.e., empirical and hydraulic). The
hydraulic version requires field-scale values of the saturated
hydraulic conductivity (k) of the riparian zone as well as
time-varying estimates of the specific yield (Sy) beside the
high frequency groundwater level readings and the distance
(l) of the groundwater well to the stream along the direc-
tion of the main riparian groundwater flowpath. The accu-
racy of the ET estimates is most sensitive (i.e., linearly)
to the effective field-scale value of k and Sy. In the absence
of the reliable field-scale value of k and/or when l is un-
known, the empirical version of the proposed ET estimation
method is recommended to be applied which yields ET esti-
mates comparable to those by the hydraulic version.
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latának elemzése a Sopron melletti Hidegvı́z-völgyben [Analysis
of the relationship between phreatophyte vegetation and the
groundwater in the forested Hidegvı́z Valley experimental
catchment near Sopron. Master’s Thesis, Institute of Geomatics
and Civil Engineering, University of West-Hungary, Sopron. pp.
60 (in Hungarian).

Troxell, H.C., 1936. The diurnal fluctuation in the groundwater and
flow of the Santa Ana River and its meaning. Trans. Am.
Geophys. Union 17, 496–504.

Tschinkel, H.M., 1963. Short-term fluctuation in streamflow as
related to evaporation and transpiration. J. Geophys. Res. 68
(24), 6459–6469.

White, W.N., 1932. Method of estimating groundwater supplies
based on discharge by plants and evaporation from soil – results
of investigation in Escalante Valley, Utah – US Geological
Survey. Water Supply Paper 659-A, 1–105.

Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations 17


