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Abstract: A hybrid, seasonal, Markov chain-based model is formulated for daily streamflow generation at multiple sites of a watershed.
Diurnal increments of the rising limb of the main channel hydrograph were stochastically generated using fitted, seasonally varying
distributions in combination with an additive noise term, the standard deviation of which depended linearly on the actual value of the
generated increment. Increments of the ascension hydrograph values at the tributary sites were related by third- or second-order polyno-
mials to the main channel ones, together with an additive noise term, the standard deviation of which depended nonlinearly on the main
channel’s actual increment value. The recession flow rates of the tributaries, as well as of the main channel, were allowed to decay
deterministically in a nonlinear way. The model-generated daily values retain the short-term characteristics of the original measured time
series �i.e., the general shape of the hydrograph� as well as the probability distributions and basic long-term statistics �mean, variance,
skewness, autocorrelation structure, and zero-lag cross correlations� of the measured values. Probability distributions of the annual
maxima, means, and minima of the measured daily values were also well replicated.
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Introduction

Hydrologists involved with operational stream forecasting and
flood control may be interested in hypothetical but quite possible
scenarios of flood events. This may help them prepare for events
that have not yet been observed in the past for which measure-
ments are available but nonetheless can be expected in the future.
While statistical analyses of, e.g., annual maxima, may offer in-
formation on the return period of floods with different magni-
tudes, they do not provide information on the possible time
sequence of the expected flood event. Such information may en-
compass duration of different water levels during a flood, the
speed at which stream levels may rise or the flood may recede,
and all of which potentially influence how flood protection works
ought to be planned and built as well as flood defense activities
organized.

Traditional autoregressive models �Quimpo 1968; Payne et al.
1969; McGinnis and Sammons 1970� are generally inadequate at
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capturing the typically asymmetric shape of the hydrograph ob-
servable in daily streamflow series �Sharma et al. 1997�. Shot
noise models, originally developed in electrical engineering, were
introduced to the hydrologic literature in the 1970s �Bernier 1970;
Weis 1973, 1977; Cowpertwait and O’Connell 1992; Murrone
et al. 1997� and were specifically formulated for working with
daily flow values, having become capable of producing—besides
basic long-term statistics such as mean, variance, and serial
correlations—realistic-looking hydrographs at a single location.
The same can be said about the types of models where input
pulses are transformed into flow values using a transfer function
approach �Treiber and Plate 1977; Kottegoda and Horder 1980� or
where daily rainfall series are generated and converted to stream-
flow series using conceptual models �Kelman 1980; Koch 1985;
Bierkens and Puente 1990�. Because adequate information of pre-
cipitation over the watershed may often be lacking, and even
when it is available, little may be known of the effective precipi-
tation that actually forms the flood event; stochastic techniques
that do not require information on precipitation may be practical
to pursue.

Xu et al. �2001, 2003� made attempts to extend synthetic
streamflow generation for a single site to multiple sites with pos-
sibly high cross correlations of the daily values among these sites.
Such cases may be of importance when stochastically generated
flow values at several upstream tributary sites are subsequently
routed with a flow routing model that can account for anticipated
changes in channel flow of the tributaries and/or of the main stem
of the river due to a change in channel conditions downstream of
the data generation sites. Such changes may result from reservoir
construction, altered operation schedule of existing reservoirs,
channelization effects, and flood protection works, just to name a
few. One may be interested in how these disturbed channel con-
ditions, both on the main channel and on the tributaries as well,
may alter the behavior of the main channel flow downstream of

the confluence with the tributaries.
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Our multivariate, seasonal streamflow-generation algorithm
detailed below uses components of the shot noise models in a
Markov chain based approach, together with a conceptual frame-
work describing flow recession without the need for information
on precipitation. It is built around the concept of conditional het-
eroscedasticity originally established in the ARCH models �Engle
1982� of time series analysis, when it is assumed that the noise
term is not independent of the process to be modeled, nor it is
identically distributed.

Model Formulation and Application

The model works with daily streamflow data from which a time
series of diurnal increments can be obtained by differencing the
original series. These increments define a two-state Markov chain
for perennial streams. State one is observed when the increment is
positive �termed as the “wet” state�, and state two �termed as
“dry”�, otherwise. The two states result in four different state
transitions: wet–wet �Pww�, wet–dry �Pwd�, dry–wet �Pdw�, and
dry–dry �Pdd�. The state transition probabilities can be estimated
from the observed data as

Pij =
nij

�
j

nij

, i, j = w,d �1�

where nij�number of observed transitions from state i to j. The
state transition probabilities typically vary with seasons. Often

Fig. 1. Location of gaug
these transitions are written on a monthly basis �e.g., Xu et al.

246 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MAY/JUNE 20
2001, 2003�, which result in very similar values among neighbor-
ing months �thus raising the question whether they are statistically
different or not�, plus in a large number of model parameters.
From the viewpoint of parameter parsimony, a seasonal resolution
should suffice in most cases, as was adapted here.

The Tisza River is the major tributary of the Danube within
Hungary �Fig. 1�. Besides the gaging station of Tivadar on the
Tisza River, three additional sites on tributaries of the Tisza were
included in the study. Table 1 lists the corresponding drainage
areas and daily mean flow rates measured at the gaging stations.
Flow data were provided by the Hungarian Hydrological Fore-
casting Service of the Institute of Water Resources Research
�VITUKI�.

50 years �from the period of 1951 to 2000� of daily instanta-
neous flow-rate values were employed for all four gaging stations
for statistical inference. Table 2 displays the estimated state tran-
sition probabilities at Tivadar on a seasonal basis. It shows that a
wet-to-wet transition has the highest likelihood in spring, which

Table 1. Drainage Area and Daily Mean �Base Period of 1985–1994�
Flow Rate of Gaging Stations Included in Study

Drainage area
�km2�

Daily mean flow rate
�m3 s−1�

Tivadar �Tisza River� 12,540 233

Csenger �Szamos River� 15,283 102

Felsoberecki �Bodrog River� 12,886 104

Agerdomajor �Kraszna River� 1,974 4.81

tions and rivers in study
ing sta
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comes from two sources: �1� it is the season of most abundant
precipitation in Hungary; and �2� it is the time of year when
melting snow in the Carpathian Mountains feeds the streams, oc-
casionally �especially when combined with rain� causing major
flooding in the region.

Ascension Limb of Hydrograph

Main Channel
Positive diurnal increments �or wet states� designate the ascension
limb of the hydrograph. Sargent �1979� and Aksoy �2003� recom-
mended a two-parameter gamma distribution for these incre-
ments. For the Tisza River at Tivadar �Fig. 1�, we found that the
Weibull distribution better fits the observed data taken from the
period of 1951–2000. Figs. 2 and 3 display the seasonal Q-Q
plots of the observed, as well as the hypothetical, two-parameter
gamma and Weibull distributions, respectively, both parameter-
ized with the help of the observed data using the Matlab functions
“gamfit” and “weibfit”. In the Weibull distribution case, the points
align closer to the perfect fit straight line, suggesting that diurnal
increments can be probably better described by the Weibull,

Table 2. Estimated State Transition Probabilities �%� at Tivadar

Pdd Pdw �=1− Pdd� Pwd Pww �=1− Pwd�

Winter 80.44 19.56 37.9 62.1

Spring 79.71 20.29 37.55 62.45

Summer 76.15 23.85 51.34 48.66

Fall 80.51 19.49 48.62 51.38

Fig. 2. Seasonal Q-Q plots of observed and two-parameter gamma
Theoretical distribution was parameterized using observed values.
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rather than by a two-parameter gamma distribution, although
none of the eight cases displayed pass the Kolmogorov–Smirnov
test at the typical 5% level.

During Monte Carlo simulation of these increments, dQ
�L3 T−1�, for wet states the computer uses the fitted Weibull dis-
tributions �on a seasonal basis� for its random number generation.
The so-obtained values for the main channel, which is the Tisza
River now, are subsequently disturbed with an additive noise
term, W�L3 T−1�, taken from a normal distribution of zero mean
�m�. The noise, however, is not identically distributed, because its
standard deviation ��� is conditioned on the Weibull-distributed
random number, dQgen, to be disturbed

W�m,�� = W�0,a · dQgen
b � �2�

where a �L3�1−b� T�b−1���scale-coefficient; and b �-��exponent.
From the generated W values, those that are negative and have
larger magnitudes than the corresponding dQgen values are dis-
carded and replaced by zero. This results in noise values that
follow a positively skewed distribution �whose mean is no longer
zero�. Fig. 4 displays the Q-Q plots of the model-obtained posi-
tive diurnal increments versus the observed increments on a sea-
sonal basis. The scale coefficient, a, and the exponent, b, are
model parameters that were calibrated using trial and error upon
visually inspecting the resulting Q-Q plots of each prescribed
�a ,b� combinations. Calibration leads to values of 1.1, 1.2, 1, 0.7
for the four seasons, starting with winter, for a, and to 1 for b.
This so-called conditional heteroscedasticity assures that the
Monte Carlo generated diurnal increments this way will better
approximate the observed distribution than a simple Weibull-
distributed number generator �compare Figs. 3 and 4�.

buted positive diurnal increment values of Tisza River at Tivadar.
-distri
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Fig. 3. Seasonal Q-Q plots of observed and Weibull-distributed positive diurnal increment values of Tisza River at Tivadar. Theoretical
distribution was parameterized using observed values.
Fig. 4. Seasonal Q-Q plots of observed and model-generated positive diurnal increment values of Tisza River at Tivadar
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Another alternative could be the use of an additive noise term
that follows a Weibull rather than a normal distribution. In that
case, the prescribed mean and standard deviation of this noise
distribution �the letter providing one with a rough idea of the
spread of the distribution� could be converted to the parameters of
the Weibull distribution. However, the Weibull distribution is a
monotonic function �i.e., no peak in the distribution function’s
shape� for a wide range of the parameters, while the distribution
of the diurnal increments is not. Consequently, it is more conve-
nient to employ a normal distribution instead, and make it skewed
by specifying the lower limit with each value of the increment to
be disturbed.

Once the positive increment values have been generated for a
wet spell, they are ranked in an increasing order to make sure that
the larger increments are closer to the peak of the hydrograph.
This recreates the general shape and ensures preservation of the
correlation structure of the ascension limb of the hydrograph
�Aksoy 2003�.

Table 3. Coefficients of Third- and Second-Order Polynomials between
Main Channel �Tisza River� and Tributary Increments during Wet Spells
of Tisza

Tivadar
Third-order

term
Second-order

term
First-order

term Constant

Csenger — −8.60·10−5 0.4323 −0.806

Felsoberecki 4.29·10−8 −1.72·10−4 0.1918 0.5555

Agerdomajor — −4.14·10−6 0.0177 0.1363

Fig. 5. Diurnal tributary versus main channel discharge changes for
polynomials are also shown together with their minimum arguments
JOURNAL
Tributaries
For small to medium-sized watersheds �i.e., the drainage area is
less than 30,000 km2 as defined by the U.S. Geological Survey’s
Hydrologic Unit Code system for subbasins �DeBarry 2004��
tributary flow values are typically correlated with the main chan-
nel values �especially when the corresponding drainage areas are
of the same order as in our case�; therefore, one may want to
avoid generation of positive increment values for the tributaries
independently of the main channel ones. One way of linking
tributary increments to the main channel state could be achieved
by conditioning the state transition probabilities of the tributaries
to that of the main channel, since for correlated flow series, the
probability of a wet-to-wet transition is higher for the tributary
when the main channel is in a wet state too. Unfortunately, such
conditioning of the state transition probabilities did not meet ex-
pectations in our study; the cross-correlation value between the
�measured� main channel and simulated tributary flow rates re-
mained much lower than observed. As an alternative, the follow-
ing was performed.

Table 4. Calibrated Parameter Values Applied in Model

a
�m3�1−b� s�b−1��

b
�-�

d
�m3 s−1�

f
�%�

g
�-�

h
�-�

kmax�
�-�

kmin�
�-�

Csenger 0.5 0.95 50 20 0.2 0.1 0.62 0.01

Felsoberecki 0.35 0.9 50 20 0.2 0.05 0.33 0.045

Agerdomajor 0.04 1 200 20 0.3 0.05 0.4 0.1

riods of main channel. Best fit second- or third-order �Felsoberecki�
0, 200 �m3 s−1�� applied for tributary data generation.
wet pe
�50, 5
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Diurnal increments of the ascension hydrograph at the main
channel were related by third- or second-order polynomials to
corresponding increments at the tributary sites. The polynomial
regression-derived tributary increment values were again dis-
turbed by an additive noise term in the form of Eq. �2�. As before,
Eq. �2� includes dQgen of the main channel and not of the tribu-
tary. Alternatively, one may choose to apply the regression-
derived tributary value in place of dQgen. In either case, the
coefficients, a and b, must be calibrated anew for each tributary
site.

Fig. 6. Ratio of Monte Carlo generated and 50 years of observed
daily flow statistics �mean, standard deviation, minimum, maximum,
and skewness� as function of simulation length

Fig. 7. Sample observed and Monte Carlo generate
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Two new parameters must be introduced into the model at this
point. The first, d �m3 s−1�, is a minimum discharge value the
positive diurnal discharge change in the main channel must ex-
ceed before the above described tributary discharge generation
starts. This is necessary to avoid tributary flooding for every tiny
increase of discharge in the main channel. The other parameter,
f�%�, ensures that the tributary-generated value on any given day
would not fall below a certain percentage �given by f� of the
previous day’s value, since the speed of recession certainly has a
natural limit. Whenever the tributary value would be lower than
this percentage of the previous day’s discharge �as a result of the
additive noise term�, the value of the actual noise term is changed
to zero. See Fig. 5 for the polynomial fit with the d value marked.
When employing the polynomials for arbitrary data generation, it
may be prudent to not apply polynomials with arguments larger
than the observed maximum diurnal change of the main channel.
Instead, it is recommended that the polynomial value of the larg-
est observed argument be maintained with such possible values.

Table 3 lists the coefficients of the third- and second-order
polynomials applied in the study, while Table 4 displays the cali-
brated a, b, d, and f parameter values for each tributary site. Note
that while the second- and third-order coefficients in Table 3 have
small values, they are not negligible because the �dQgen�3 and
�dQgen�2 terms are typically on the order of 106–104, respectively.
Calibration of the tributary a, b, d, and f values is explained
below.

Recession Curve

Observed flow recession in the channel is generally of a nonlinear
nature �Aksoy et al. 2001�. This is so because the upper part of
the recession limb of the hydrograph is influenced by channel

series of daily flow rates of Tisza River at Tivadar
d time
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Fig. 8. Estimated distribution functions of 50 years of observed and
simulated daily flow rates of Tisza River at Tivadar
JOURNAL
Fig. 9. Empirical cumulative distribution functions of 50 years of
observed and simulated annual maxima, means, and minima of daily
flow rates of Tisza River at Tivadar
Fig. 10. Seasonal box plots of 50 years of observed and simulated daily flow values of Tisza River at Tivadar �see text for explanation�
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storage, while the lower part is mainly the result of baseflow
recession �in the case of typical groundwater-fed streams�, which
has been demonstrated as a characteristically nonlinear process
�e.g., Szilagyi 1999�. Often a nonlinear reservoir approach is used
to describe the behavior of the full range of the recession limb of
the hydrograph as

Fig. 11. Autocorrelation functions of 50 years of observed and
simulated daily flow values of Tisza River at Tivadar

Fig. 12. Sample observed and Monte Carlo generated
252 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MAY/JUNE 20
Q = kSn �3�

where Q �L3 T−1��observed streamflow; k �L3�1−n� T−1��storage
coefficient; S �L3��stored water volume; and n �-��exponent. To
accommodate for the different sources of water during recession
flow, the value of the exponent may be changed with time
�Kavvas and Delleur 1984�. As an alternative, rather than chang-
ing n through time, the value of k may be changed �Aksoy et al.
2001; Aksoy 2003� with the n=1 choice. When n is unity, Eq. �3�
can be written in a differentiated form as

dQ

dt
= − kQ �4�

which has a solution

Q�t� = Q0e−kt �5�

that can be written for t=1 day and with the Q0=Q�t−1� choice
as

Q�t� = e−k�Q�t − 1� = c1Q�t − 1� �6�

where k��=1·k� �-�. Employing a finite difference approximation
of Eq. �4� with t=1 day yields

Q�t� = �1 − k��Q�t − 1� = c2Q�t − 1� �7�

which shows that, by the proper choice of c2 in the finite differ-
ence scheme, one can obtain the analytical solution of Eq. �6�. By
letting the value of k� in Eq. �7� change through time, one can
simulate the outflow of a nonlinear reservoir having a variable
exponent through time. The following expression permits the

series of daily flow rates of Szamos River at Csenger
time
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value of c2 to increase in a logarithmic fashion from a minimum
value at the time of the peak of the hydrograph to close to unity if
kmin� is chosen sufficiently small

Q�t� = Q�t − 1��1 − kmin� −
kmax� − kmin�

ln�Qmax

Qmin
� ln�Q�t − 1�

Qmin
�	 �8�

Note that when Q�t−1�=Qmax, c2=1−kmax� ; and when
Q�t−1�=Qmin, c2=1−kmin� . Eq. �8� assures that the recession is
steeper than a negative exponential function, and so fits observa-
tions �Kavvas and Delleur 1984�.

The above description of recession flow cannot account for
year-to-year or season-to-season variations in the volume of
groundwater stored in the catchment. During wet years/seasons,
this additional source of water will prevent very low flow rates in
the channel for perennial streams. The model can account for this
variability by adding a stochastic groundwater component to the
recession flow model of Eq. �8� in the form

Fig. 13. Estimated distribution functions of 50 years of observed and
simulated daily flow rates of Kraszna River at Agerdomajor

Fig. 14. Estimated distribution functions of 50 years of observed and
simulated daily flow rates of Bodrog River at Felsoberecki
JOURNAL
Qgw�t� = �1 − kmin� �Qgw�t − 1� �9�

where Qgw designates the groundwater contribution to the channel
flow, which thus becomes the sum of Eqs. �8� and �9� during
recession flow periods. The starting value of Qgw with a wet-to-
dry transition at time t=0 is obtained as

Qgw�0� = 
W�g · Qgen�t�,h · Qgen�t��
 �10�

where, again, g �-� and h �-��parameters to be calibrated; and W,
as before, = normally distributed variable. The straight brackets
are for taking the absolute value. In theory, the multiplier of Qgw

in Eq. �9� could change with time as in the channel flow case
�Brutsaert and Nieber 1977; Szilagyi 1999, 2004�, but that would
further complicate the model, which is intended to be as simple as
necessary.

The model has altogether ten parameters �a, b, d, f , g, h, kmax,
kmin, Qmax, Qmin�, to be specified for each gaging station. Two of
them, Qmax and Qmin, are the observed extrema and can be speci-
fied during Monte Carlo simulation to be somewhat larger and
smaller, respectively, than their historical values, in order to ac-
commodate for possibly larger or smaller generated values than
what were observed. From the remaining eight parameters, only a
varied with season in our study area and even that only for the
main channel. The rest of the parameters were constant over the
year.

Model Results and Conclusions

Before calibration, involving Monte Carlo simulations, one has to
decide the number of values to be generated. A natural choice is
the number of available observations. However, when the number
of observations is small, then the statistics of the so-chosen
equally small number of generated values may significantly differ
between simulation runs, making any calibration based on such
short runs questionable. To demonstrate this point, in Fig. 6 we
plotted some basic statistical values �mean, standard deviation,
skewness coefficient, minimum, and maximum� of individual
simulation runs of our proposed model with differing length �i.e.,
5, 10, 25, 50, 100, 200, 400, 800 years of daily data� for the

Fig. 15. Empirical cumulative distribution functions of 50 years of
observed and simulated annual maxima, means, and minima of daily
flow rates of Szamos River at Csenger
Tivadar gaging station. The model parameter values were derived
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by calibration based on 50 year runs and remained unchanged for
all cases shown in Fig. 6. It can be seen that all the statistics may
change significantly between model runs shorter than 25 years.
Fig. 6 thus suggests that calibration based on 50 or 100 years of
generated daily data �involving altogether 18,262 or 36,524 data
points, respectively� can most probably be considered as stable.
Model calibration based on 50 year runs of simulated data was
therefore employed in this study. With every new set of parameter
values this way, the Monte Carlo simulation produces a new time
series of 50 years which is then compared to the observed time
series. Calibration again was performed by trial and error based
on visually comparing: �1� the estimated distribution function of
daily values; �2� the empirical cumulative distribution functions
of the annual maxima, means, as well as minima of the generated
values; and �3� the generated time series, with those of the ob-
served ones.

For the main channel, recessions were modeled with
kmax� =0.33, kmin� =0.015, g=0.04, and h=0.02. Sample observed
and generated time series of daily discharges at Tivadar are dis-
played in Fig. 7. The asymmetric shape of the observed hydro-
graphs is well conserved in the generated data. The distribution
function estimates �using the Matlab function “ksdensity”� of 50
years of observed and simulated daily flow rates are compared in
Fig. 8. The empirical cumulative distribution functions of the
annual maxima, means, and minima are displayed in Fig. 9,
employing Weibull plotting positions. They all pass the
Kolmogorov–Smirnov test at the 5% level for the null hypothesis
that the observed and generated annual minimum, mean, and
maximum values are from the same hypothetical distributions.

Fig. 16. Seasonal box plots of 50 years of observed and
Fig. 10 exhibits box plots of observed and 50 years of simu-
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lated daily flow rates of the Tisza River at Tivadar for each sea-
son. The bottom and top of each box corresponds to the lower and
upper quartiles of the data, respectively; the middle line repre-
sents the median, and the whiskers extend to the most extreme
data within 1.5 times the interquartile range �i.e., the height of the
box�. The crosses are outlier values. The annual change in the
median values �i.e., elevated water levels in spring, low flows in

lated daily flow values of Bodrog River at Felsoberecki

Fig. 17. Autocorrelation functions of 50 years of observed and
simulated daily flow values of Kraszna River at Agerdomajor
simu
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three� or smaller �last three� than Qp.
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autumn�, as well as the skewness of the distributions are clearly
maintained in the Monte Carlo generated daily flow rates. Fig. 11
displays the corresponding autocorrelation functions of 50 years
of observed and simulated daily flow values.

Sample observed and simulated daily flow rates are displayed
in Fig. 12 for the Szamos River at Csenger. Distribution function
estimates are shown in Figs. 13 and 14 for the Kraszna at Ager-
domajor and the Bodrog at Felsoberecki, respectively. Fig. 15
demonstrates the empirical cumulative distribution functions of
observed and simulated annual maxima, means, and minima for
the Szamos River at Csenger, all passing the Kolmogorov–
Smirnov test at the 5% level. Seasonal box plots are exhibited for
the Bodrog River at Felsoberecki in Fig. 16. It generally shows
that model performance for tributaries is somewhat poorer than
for the main channel �see Fig. 10�. Finally, the autocorrelation
functions �observed and simulated� of the daily flow values are
displayed in Fig. 17 for the Kraszna River at Agerdomajor. Table
5 lists the one-step autocorrelation and zero-lag cross-correlation
values of the observed and generated time series. Tables 6–9
document how the generated values reproduce observed fre-
quency, duration, and volume characteristics of floods and low
flows. It can be concluded that flood attributes are better retained
than low flow features. This is in spite of the stochastic baseflow
component in the model meant to account for a dynamic ground-
water storage in the watershed which has been lacking in the
approach of Aksoy �2003�, and our results only emphasize the
importance of groundwater–surface water interactions in daily
synthetic flow generation.

Table 9. Observed Values �Qp� of Selected Percentiles of Empirical
Cumulative Distribution Function of Daily Flow Values at Agerdomajor,
Kraszna River

Percentile
�%� Qp �m3 s−1� d �%� v �%� n

99 62.7 1 �0.77� 15.01 �11.74� 53 �45�

95 27.5 5 �4.18� 39.43 �33.5� 208 �150�

90 15.8 10 �9.62� 55.31 �51.86� 360 �274�

10 0.6 10 �16.4� 0.467 �0.99� —

5 0.34 5 �6.49� 0.137 �0.23� —

1 0.115 1 �0.91� 0.014 �0.013� —

Note: Number of peaks �n�, as well as relative duration �d� and volume
�v�, of observed and generated �in parentheses� flow rates larger �first
three� or smaller �last three� than Qp.

Table 10. Sensitivity Analysis of Model Parameters at Csenger, Szamos
River, Based on Coefficient of Variation Ratio �rCv� of Generated and
Original Time Series. Parameters Are Listed from Most Sensitive to Least
Sensitive Order. rCv=0.83 with Calibrated Parameters

rCv when parameter
value is doubled

rCv when parameter
value is halved

b �10 0.57

kmax 1.16a 0.53

g 0.35 1.12

a 1.03 0.69

h 0.78 0.79

d 0.86 0.79

kmin 0.84 0.82

f 0.82 0.83
aParameter value is multiplied by 1.5 instead of two due to natural
Table 5. One-Step Serial and Cross Correlation �between Actual Station
�.� and Tivadar �T�� Coefficients of Observed and Model-Generated Daily
Flow Values

One-step autocorrelation
�r1�

Cross correlation
�r0,T�

Gaging station �stream� Observed Generated Observed Generated

Tivadar �Tisza� 0.92 0.89 — —

Csenger �Szamos� 0.90 0.80 0.78 0.68

Felsoberecki �Bodrog� 0.98 0.93 0.69 0.66

Agerdomajor �Kraszna� 0.94 0.89 0.51 0.59
Table 6. Observed Values �Qp� of Selected Percentiles of Empirical
Cumulative Distribution Function of Daily Flow Values at Tivadar, Tisza

Percentile
�%� Qp �m3 s−1� d �%� v �%� n

99 1170 1 �0.87� 6.1 �5.27� 69 �91�

95 689 5 �4.27� 20.17 �16.74� 274 �314�

90 504 10 �9.43� 32.23 �28.54� 484 �593�

10 66 10 �4.31� 2.1 �0.93� —

5 53 5 �1.51� 0.8 �0.27� —

1 38 1 �0.19� 0.1 �0.03� —

Note: Number of peaks �n�, as well as relative duration �d� and volume
�v�, of observed and generated �in parentheses� flow rates larger �first
three� or smaller �last three� than Q .
Table 7. Observed Values �Qp� of Selected Percentiles of Empirical
Cumulative Distribution Function of Daily Flow Values at Csenger,
Szamos River

Percentile
�%� Qp �m3 s−1� d �%� v �%� n

99 747 1 �0.81� 8.68 �6.58� 74 �83�

95 394 5 �3.88� 24.95 �18.48� 286 �286�

90 275 10 �8.62� 37.56 �30.13� 462 �461�

10 28.8 10 �3.35� 1.74 �0.59� —

5 23.4 5 �1.49� 0.75 �0.22� —

1 16.2 1 �0.15� 0.1 �0.02� —

Note: Number of peaks �n�, as well as relative duration �d� and volume
�v�, of observed and generated �in parentheses� flow rates larger �first
three� or smaller �last three� than Q .
Table 8. Observed Values �Qp� of Selected Percentiles of Empirical
Cumulative Distribution Function of Daily Flow Values at Felsoberecki,
Bodrog River

Percentile
�%� Qp �m3 s−1� d �%� v �%� n

99 556 1 �0.51� 6.2 �3.37� 33 �37�

95 341 5 �3.03� 21.4 �13.65� 112 �160�

90 260 10 �6.08� 34.89 �22.48� 228 �265�

10 25.6 10 �7.22� 1.23 �1.38� —

5 10.1 5 �0.18� 0.37 �0.01� —

1 8.1 1 �0.05� 0.057 �0.003� —

Note: Number of peaks �n�, as well as relative duration �d� and volume
�v�, of observed and generated �in parentheses� flow rates larger �first
constraint �k�1�.
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Finally, Table 10 displays the outcome of a parameter sensi-
tivity test performed at Csenger. The model is most sensitive to
the value of the noise term exponent �and also to its scale param-
eter, a� for diurnal discharge changes and to the recession con-
stant, kmax. The model is also highly sensitive to the starting value
of baseflow recession through the parameter g, which corrobo-
rates our findings above, emphasizing the importance of the
groundwater dynamics in daily flow-rate time series generation.

In conclusion, it can be stated that by applying the proposed
hybrid, seasonal Markov chain-based approach of daily flow
simulation at multiple catchment sites it is possible to generate
arbitrarily long time series of daily flow rates that at least mod-
erately well preserve basic long-term �mean, variance, skewness,
autocorrelation structure, cross-correlations� statistics, as well as
short-term behavior �asymmetric hydrograph� of the original time
series. In a seasonal comparison, the model better works for the
main channel than for the tributaries. This is so because tributary
state transitions could not be linked to the main channel in a
probabilistic way �i.e., the tributary state transitions ought to be
conditioned by the corresponding state of the main channel�;
rather, they were linked through a deterministic polynomial ex-
pression of diurnal increases. The general modeling approach
�main channel and tributaries as well�, however, is centered
around the concept of conditional heteroscedasticity, which
means that the noise term of the stochastic model applied is not
independent of the process to be modeled and neither is it iden-
tically distributed. The model has altogether nine parameters �in a
seasonal formulation� for the main channel site to be calibrated,
and eight additional parameters for each tributary gaging station.
While the described approach is simple, calibration of the param-
eters may require some effort from the modeler, especially be-
cause no simple target function of calibration could be found
since the generated time series must simultaneously satisfy both
short- and long-term behavior of the observed time series.
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