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Abstract: A discretization of the continuous Kalinin-Milyukov-Nash-cascade is performed with the help of state-space analysis for
hydrological forecasting of streamflow. A sample-data system approach is used during the discretization and results in discretely coinci
dent values with the continuous model. The sample-data system uses input values measured instantly in time and assumes linear chan
in the value of the input variable between discrete data measurements. Such description gives a generalized formulation of the pulse-de
system approach often used in system engineering and discrete-time analysis of hydrological systems. An example is given to demonstre
that the approach results in improved forecasts of stream-discharge values when compared with the more traditional pulse-data syste
approach.
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Introduction forecasting, the correct value of the forecasted river stage during
floods is critical because a difference of a few percent in the value

Hydrological processes, such as streamflow, are rarely measurednay mean the evacuation of densely populated areas. Under such

continuously in time, and even in the rare events when they arecircumstances, one strives to reduce any possible model uncer-

(e.g., by the application of pressure-transdugdtsese measure-  tainty which, as of today, is commonly achieved by the applica-

ments are subsequently discretized so the resulting discrete valuetion of certain digital filters, the most notable one having been

can be stored and processed on a digital computer. A sample-datgleveloped by Kalma1960 in a state-space framework.

system is formed when the value of a variable assigned to discrete The Kalinin-Milyukov-Nash (KMN)-cascade originally for-

points in time corresponds to the instantaneous value of the samenulated by Nash1957 for rainfall-runoff modeling, and inde-

variable—whose value changes smoothly in time—at those dis- pendently of him by Kalinin and Milyukoy1957% for flood rout-

crete time-points. A good example for such a variable is stream-ing, assumes that the constant exponemts &nd m,) of the

flow which is measuredgenerally via stage-measurements using rating curve and that of storagé) as a function of stagéy) are

a rating-curve methgdinstantly in time. Precipitation, for ex-  equal

ample, is different because one rarely needs instantaneous values _ m

of precipitation intensities; rather one almost exclusively uses ac- QE=caly(®]™ (12)

cumulated precipitation values of different durations which re- S(t)y=cy[y(t)]™ (1b)

sults in a series of step functions. ¢ h - h of th h
Working with discrete data has its consequences because hy{0f @ characteristic reach of the stream, whe@

drological processes, like most other natural phenomena, are con-_ stream-discharge;=time; andc, andc,=constants. Eqg1a)

tinuous in time and the models describing them are continuous as2d(1P) yield the linear storage equati€(t) =k(t), where the

well. As a consequence, discretized forms of these continuous'NVverse O_fk is the so-called storag_e coeff|C|_e(rm) W't_h a dimen-
models are often required to be formulated to become compatibleSion Of time. The storage equation combined with the lumped
with the discrete nature of the data availaf$&erman 1932 The Version O_f Fhe continuity equa_tlordS’d_t=Qin—Qout, for the )
state-space approach of model discretization may be preferreacharac_tenstm re_ach trgnsform into a flrst-order, constant coeffi-
when the nature of the application requires the handling of model cient, linear ordinary differential equation

uncertainties that may arise from measurement errors or inad- dS(t)

equacies in model selection. In the case of operative hydrological —qr -~ kSO +Qin(t) 2
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of n characteristic reachdsvheren is an integer numbegrwith

identical storage coefficients, one obtains the well-known

impulse-response function of the continuous KMN-cascade

k n—1
h(t):kLe—kt

(n—=1)! “)

By definition of the characteristic reach one can call such a reach
a linear reservoir where the stored water in the reservoir is di-

rectly proportional to the outflow from it. Noticing that the output
of theith reservoir is the input to the ¢ 1)th reservoir, Eq(2)
can be written in matrix form for a cascade of oraeas (e.g.,
Szdlgsi-Nagy 1982

sm) [k % Trsuny 1
Sy(t) k —k S| |o
53('[) - k —k

S0 [+] 0 Qu(t)

sm] | o o Jlso] Lo

©)

S(t)=FS(t)+GQin(1) (6)

where the state matrig is annxn Toeplitz matrix (SzdI0si-
Nagy 1982; Nikolski 2002 The outflow from the last reservoir is
the output of the whole system which can be written as

Si(t)
Sy(t)
Qou()=[0,0,0,.. k]| Ss(t) | =HS(t) (1)
St
The solution of the state equati@6) is given by(Szdlési-Nagy
1982

t
S(t)=P(t,t9) S(to) + ft O (t,7)G(1)Qjp(7)dr (8)
0
where for the KMN-cascade the inpu&} and output H) vectors
are constant vectors, so is the system makixwhich causes the
nXxn state transition matrixp depend only on the time-lag be-

where the dot denotes the temporal rate of change in the variabldWeent andto. @ is the matrix exponential of such as

and the subscripts denote the place of the reservoir in the line of

cascade. Eq(5) is the state equation of the continuous KMN-
cascade, and can be written in a more succinct form as

e~ k(t—tg) 0
k(t—tg)e ki~

[k(t—to)]*
——e
Q(t,to)= 2!

t—to)

(n=1)! (n—2)!

See SzbGsi-Nagy (1982 for the steps involved with the deriva-
tion of Eq.(10), where the Toeplitzian property of the state matrix
was exploited. Combining Egé7) and(8) and assuming that the
system is initially relaxeds(t,) =0 atty,=0, i.e., the reservoirs
are empty, one obtains

Qou[(t):ftH?(t:T)GQin(T)dT: fth(t—T)Qm(T)dT
0 0
(11)

which is the convolution equatiof8) in matrix form. Note that
the left-multiplication of® by H in Eq. (11) produces the last line
of & as a row vector multiplied bk, and which upon further
multiplication from right by G results in the bottom left-most
element of® (multiplied by k), thus recovering Eq(4) for the
IUH of the KMN-cascade.

e K(i-to)

k(t—tg)e (1)

_ -1 _ -2 _ -3
O P (G ) Y 1 0) W

D(t,tg)=eb (" ©
The elements ofb are the following:
0 -
0 .o 0
e k(t—to) o 0
(10)

e—k(t—to)

(n—3)!

Discretization of the Continuous State Equation
of the Kalinin-Milyukov-Nash-Cascade
in a Pulse-Data System Framework

When the instantaneous value @f, is available at discrete time
intervals ¢=At,2At,3At,...) of equal length, and the state vari-
able S is known at timet then, by virtue of Eq(8), S at timet

+ At can be calculated a$zdldsi-Nagy 1989

t+At
O (t+At,1)GQp(r)dr

(12)

S(t+At) =P (t+At,t)S(t)+ f
t

which transforms into the following simpler form provided that
Qin(t) is taken to be constant at the value it obtains at tijria

Below it will be shown how the continuous state equation can the[t,t-+At) interval (Szdlgsi-Nagy 1982

be discretized firstl) in a pulse-data system framework follow-
ing Szdldsi-Nagy (1982, 1989 and then(2) in the more general

sample-data system framework which is the main contribution of

the present study.

S(t+At)=d(AH)S(t) + L(A)Qin(t) (13)

From Eq.(10) we obtain
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P(AL)

r e k(A
k(At)e kA
[k(;t)]ze_km
[k(At)]"~*
(n—=1)!

—k(At)

0
e k@b

k(At)e kA0

[k(AD]"2
————e

(n—=2)!

where again the time invariance of thesystem matrix was uti-
lized. Thel' vector results from Eq(12) if the inflow valueQ;,,

0
e~k 0
(14)
-3
—k(At) Mefk(m) e k(At)
(n—3)! |

which produces the unit-pulse response function with $@)
=0 choice as

which is assumed to be constant between the integral bounds, is

brought outside the integral
t+At
E(At):f d(t+At—7)Gdr (15)
t

ThenX 1T vector, which in a more general approach is indeed a
matrix, is called the input transition matrix in system engineering.
Theith element or row ol can be expressed as

tratk(t+At—T1) "1
Ti(At)= f —i-nr €

KAt
xi ~le~*dx
0

1T kAt)
Tk (i—-1)!

K(t+At=7)gp

1
k(l—l)!

1T kAt)
Tk T()

where thek(t+At—7) term, which is never negative, was sub-
stituted byx in the integral, and the gamma-function’s property
for integersi, that I'(i) is equal to {—1)! was utilized. The
numerator on the right-hand-side of E46) is the so-called in-
complete gamma function.

The impulse-response function of the continuous KMN-

(16)

h(mAt)=H®™ (A L(At) (19)

Eq. (19) is the inner product of the last line di™~* (multiplied
by k) and thel’ vector

[k(m—1)At]"~t (i kAt)

h(mAt)=e~k(m-1At E (n—i)! L(i)

i=1

(20)

where special use was made of the state transition matrix's defi-
nition (Szdldsi-Nagy 1982
(I)m(At):(eFAt)m:eFmAt (21)
Szdlosi-Nagy (1989 proved that the discrete model, given by
the matrix triplef @ (At),['(At),H] is an adequate representation
of the continuous KMN-cascade model defined ByG,H]. Ad-
equacy here means that the discrete version of the continuous
KMN-cascade(1) gives identical output values at discrete points
of time with the continuous model, provided the continuous

model receives the same pulsed data iriplaish 1959; O’Connor
1982, and(2) preserves continuity of the original model.

cascade is replaced by the unit-pulse response function in the o _ .
discrete model, and can be obtained, using the pulse-data systeriscretization of the Continuous State Equation

approach, by the following recursiq®zdlosi-Nagy 1989
S(At)=D(At)S(0) + ' (At)Qin(0)
S(2A1) =P (ADS(A) +T(A) Qin(At) = DZ(A)S(0)
TP (AL (A)Qin(0) +L(At)Qin(At)

m—1

S(MAD =P™(ADS(0)+ X, O™ LTI(ADT(AD)Qin(iAL)
i=o a7
From Eq.(17) the outflowQ,, of the cascade at=mAt is
QouMAt) =HS(mAt) =HPM(At)S(0)

m—1
n 20 HOM I-I(ADT(At)Q;(iAt)  (18)

of the Kalinin-Milyukov-Nash-Cascade
in a Sample-Data System Framework

When applying the KMN-cascade model for flood routing, both
the input and output variables of the model are generally stream-
flow values for larger river networks. The only exception may be
the first upstream gauging station in each subbasin where the flow
values are modeled with precipitation as input to the model. At
these locations, the application of the pulse-data system frame-
work is well justified since precipitation is generally reported as a
constant accumulated value over a given period. At the other
gauging stations farther downstream, however, the adaptation of a
sample-data system seems to be more adequate, since streamflow,
as mentioned earlier, is measured instantaneously and changes
continuously between subsequent measurements.

In the sample-data system framework derivation of the dis-
crete model, it is assumed that streamflow changes linearly be-
tween any two measurements. With this assumption(Eg).can
be written as

JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / NOVEMBER/DECEMBER 2003 / 341



S(t+AH)=P(A)S(H) + f
t

t+At

d(t+At—7)Gu(T)dT

t+At
=(§(At)_S(t)+f P(t+At—1)G
t
X|u(t)+ W(T—t)}dﬂr

where inflowQ;, from now on will be denoted withu for easier

(22)

system the constant inputs are indeed interpreted on clésed

left) and open(from right) time intervals[t,t+At), as is cor-
rectly denoted here. Openness of the time interval from the right
means that the constant value over the interval is not interpreted
at timet+ At, because the input signal jumps to a new value at
that time instant and the input cannot have two values simulta-
neously in time. To the contrary, within the sample-data system
framework there are no jumps involved in the input signal repre-
sentation; thus the unit pulse must be described by two values of
unity over the sampling intervdk,t+ At], over which the input

notation. Observe that the state transition matrix remains the variable is assumed to change linearly and which is closed from

same, but, as is shown below, not the input transition vetor
See the Appendix for the steps involved with the derivation of the

new solution, which becomes

S(t+At) =P (At)S(t) + T (At)u(t+At)—To(At)u(t)

where the elements df; are

T 1T(LKAD) ekAt 1] -
KT |1 T(IKkAD KAt
1 I'(2KAt) (KADekat 2
K T |*7 Tekat kit
r(At)=| 1T(3kAt) (kAt)2e—kat 3
k T(3) T(3KkAD) KAt
1 I'(n,kAt) (KAD)N~te—kAt
Lk T(n F(nkat) kAt ]
and the same fof', can be written as
" 1 T(1kAL)[ e kat 1 -
k T(1) |T(1kAD) kAt
1 T(2KAD) [kAte k&t 2
K T(2) |T(2kA) KAt

[y (A=

k T(3)

1 T(3KkAt)[(kAt)2e kat 3
[(3kAt) kAt

Lk T(n)
With this result, Eq(18) becomes

1 T(n,kAt) [(KAt)"—le—kat
T(n,KAD)

KAt

(23)

(24)

(25)

m—1
Qou( MAD =HS(MAD) =HO™AD)S(0)+ >, HO™ 17I(AD)
i=0

X{L1(AHU[(i+1)At]-L(Atu(iAt)}

(26)

which shows that the output at tinbés not only influenced by the
input att— At but also at. This seemingly is a new development

both sides now. Note that the derivation of the unit-pulse response
in both frameworks requires an integration of the input signal
over the[t,t+ At] interval for which the openness or closedness
of the interval does not make any difference, since the value of
the integral does not change over a single point.

The unit-pulse response function of the sample-data system is
obtained by lettingu be unity at botht=0 andt=At, assuming
the system is relaxed. Note that whenever the input value is con-
stant over the sampling interval, i.e., holds its last sample value,
the two separate input transition vectars,andl’, collapse into
I', the input transition vector of the pulse-data system, which
means that the unit pulse response functions of the two frame-
works are identical and so the two models] df(At),I"(At),H]
and [®(At),[;(At),[,(At),H] are indeed equivalent. Conse-
quently, the output at+ At in both frameworks are influenced by
the simultaneous input; however, this influence is hidden in the
pulse-data system representation because of the openness of the
sampling interval. Note that though the IUH is the same for both
data frameworks, the way the output is calculated is somewhat
different [i.e., compare Eqs(18) and (26)] between the two
frameworks.

The equivalency of the two models does not mean that they
give identical flood routing results since the inputs are assumed to
behave differently in the two approaches between subsequent
samples. If however one assumes that the input does not change
over the sampling interval in the sample-data sysfem, u[ (i
+1)At]=u(iAt) is used in Eq(26)], then the pulse-data system
outputs are recovered, meaning that the sample-data system is a
more general approach which, as a special case, includes the
pulse-data system description. Because of the equivalency of the
two discrete models, discrete coincidence and continuity of the
discrete model for the pulse-data framework will remain valid in
the sample-data system framework as well. For a demonstration
of the model’s discrete coincidence with the continuous KMN-
cascade, see Fig. 1, where a piecewise-linear input signal was
routed through the continuous and the discrete models, mith
=1, At=1[T], andk=0.1[T"1].

Demonstration of the Discretized Kalinin-Milyukov-
Nash-Cascade for Streamflow Forecasting

when compared to the pulse-data system description, where the
output at timet does not seem to be influenced by the synchro- Application of Eq.(26) in hydrological forecasting problems al-

nous input, as is suggested by Eg8). This however is not quite

so, and here is the explanation.

The two discrete models, given Hyb(At),['(At),H] and
[®(AL),[1(AL),I,(At),H] are equivalent if their unit-pulse re-
sponse functions are identicéDesoer 1970 In the pulse-data

lows the user to choose between data systems without the need of
changing the model structure. For pulsed data, such as accumu-
lated precipitationy at (i +1)At in Eq. (26) is taken equal to the
value ofu atiAt. This may generally be required, when precipi-
tation is transformed into effective precipitation to be used as

system framework, the unit-pulse response function can be ob-input when making streamflow predictions for the first gauging

tained from Eq(18) by letting the input to be unity @t=0 (when

station along the stream. For other gauging stations downstream

the system is relaxedand zero otherwise. This means only one the inputs will be streamflow values in the flow routing between
nonzero value for the discrete input because in the pulse-dataany two gauging stations requiring a sample-data system ap-
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—a if one stops after the first-order term in the expansion employing
51 et —a by the continuous model a backward-difference scheme and assuming equidistant sam-
/ X _ Gy By the discrete model pling; and the same becomes
4t /’I \ i
/ \ (t+iAt)=u(t)+ E ci){u(t)—u(t—m)
- 3l / \ =1
!
ni__l I,’ \ +0.5u(t)—2u(t—At)+u(t—2At)]}  (28)
— \
C 2 I/I \ when using a second-order expansion. The empirical constant
/ \‘ the expressions accounts for the random nature of the signal and
11/ \ A must be optimized for best results in the estimation. Note that
H \ Egs.(27) and(28) can be considered as a special, primitive form
/ ) \ ) of an autoregressive process. The advantage of these equations is
% 10 -+ 20 that they contain only one parameter to be optimized. Note also
Time [T] that the way future input is estimated in our demonstration is not

Fig. 1. Routing of piecewise-linear input with continuous and dis-
crete models using sample-data system approach. Herd, At

=1[T], andk=0.1[T 1].

the focus of this study. These estimates are generally available as
operative model forecasts for the upstream gauges using inputs
even further upstream, when performing this kind of nested-type
predictions.

Before forecasting, one must estimate the state vari&®),
at the start of the calculations. This can be achieved by inverting

proach since streamflow values are measured instantaneously anggs. (18) and (26), respectively, provided they are written in a
change smoothly rather than through jumps.

When applying Eq.(26) to forecast streamflow at a down-
stream location using stream-flow information upstream, the nxn matrix Q=[H®,H®P?2,...,HP"]’ where the prime denotes
value of u at time t+At, the time of the forecast, is not yet
known. A discrete and empirical version of Taylor's expansion discrete model, and is never singular provided 1, k>0, and
may be used to estimateat timet+iAt (i=1,2,3), which can

be written as

A(t+iAt)=u(t)+

> ci)[u(t) u(t—At)] (27)
i=1

super-matrix structure where each line consists of Eff). and
(26), respectively, withm changing from 1 tan. The so-derived

the transpose of the matrix, is the observability matrix of the

At>0 (SZdlGsi-Nagy 1987, 1989

Stream stages are recorded at 6 a.m. each day for the Danube
in Hungary. The stage measurements are transformed into stream-
flow using a rating-curve method. In our demonstration of the
discrete model, streamflow at Baja, about 200 km downstream of

10000 T T T T T T
— Measured streamflow at Baja
+ 1-day forecast
--- Measured streamflow at Budapest
5000 e
o L 1 1 1 1 |
0 50 100 150 200 250 300 350
10000 1 L T ) T 1
—— Measured streamflow at Baja
_ + 2-day forecast
° 5000
E 4
(¢}
0 1 1 1 L 1 1
0 50 100 150 200 250 300 350
10000 ~T T T —T T T
—— Measured streamflow at Baja
+ 3-day forecast a
5000 4
0 1 1 1 1 1 i
0 50 100 150 200 250 300 350

Days

Fig. 2. Measured streamflow at Budapest and B&anube at 6 a.m. each day and 1-2-3-day forecasts for Baja using pulse-data system
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Table 1. Optimized Parameter Values and Model Performance Sta- Budapest, is forecasted from measurements in Budapest with a

tistics of Discrete Model for All Three Lead-Times Combined lead time varying from one to three days. In the first experiment,
Pulse-data Sample-data a pulse-data system framework is used while in the second one a
Eorecasts system system sample-data system approach is applied with the discrete model.

In both cases the andk values are optimized by systematically

With no input forecasts changing their values within a preset range and accuracy for each

Nopt . L 1 parameter when running the model repeatedly to find the smallest
Kopt [d™] 0.6 04 mean root-square errors in the estimates. With the sample-data
Copt (first order Taylor expansian - 0.8 system approach, the above first- and second-order empirical
Mean root-square errgm’s ] 423 379 Taylor-expansions are applied to estimateat time t+iAt (i
Nash-Sutcliffe efficiency coefficient 95.8 96.7 =1,2,3) from measured data &iwith ¢ being a third parameter
S(Q;— Q)2 to be optimized. The model was run without being continuously
[%]=10C<1—W> updated, which means the recalculation ${0) for each day
before the new forecast is issued, a common practice in opera-
With perfect input forecasts tional forecasting to ensure best possible model results. The ob-
Nopt 2 2 jective here is only to show that the model can be run in a pulse
Kopt [d7 1] 1 0.9 and also in a sample-data system approach without changing any-
Mean root-square errgm®s 1] 286 262 thing in the model structure and also to verify whether a sample-
Nash-Suitcliffe efficiency coefficient 98.1 98.4 data system approach improves the forecasts or not, without
(0, Q)2 going into detai_ls of how to manage errors i_n the forecasts, which
[%]le({ 1- W) can be done with the aforementioned application of the Kalman-

filter or by a simple autoregressive model compor{@fitsan and
Note: Heremy=2,317 nf s~ * is mean streamflowsample size- 340) at O'Connor 1994,
Baja. In first case scenario, future streamflowt&tiAt (i=1,2,3) is Fig. 2 displays the one-, two-, and three-day forecasts for Baja

estimated with help of empirical Taylor's expansion for sample-data sys- ,qin s hylse-data system approach. Note that the last flood event
tem at Budapest, while in pulse-date system it is taken equal to last appened to be a record flood at Budapest and was part of the
measured value. In second scenario it was assumed that perfect streamh PP P P

flow forecasts were available at Budapest feriAt (i=1,2,3), which mayhem Europe experienced in the summer of 2002 with several

means measured streamflow at those days were also used as inputs irasualties and flood damages in billions of dollars across the con-

routing. tinent. The model predicted the record flood rather accurately
with a 24 h lead-time, but it was less accurate with the second
largest flood within the display period of the figure. Optimization
resulted inn=1, andk=0.6 d . See Table 1 for the error statis-

10000

T T
— Measured streamflow at Baja
1-day forecast
--- Measured streamflow at Budapest

5000

1 ] 1 Il
0 50 100 150 200 250 300 350

T T
— Measured streamflow at Baja
2-day forecast

0 Il I i 1 1
0 50 100 150 200 250 300 350

T T
Measured streamflow at Baja
+ 3-day forecast

5000

1 L 1
o] 50 100 150 200 250 300 350
Days

Fig. 3. Measured streamflow at Budapest and B@janubg at 6 a.m. each day and 1-2-3-day forecasts for Baja using sample-data system.
Temporal extrapolation of inflow at Budapest involved a first-order Taylor’s expansion in discrete time.
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10000

T T
— Measured streamflow at Baja N
1-day forecast X /
~--- Measured streamflow at Budapest ’,'

5000

T T
— Measured streamflow at Baja
2-day forecast .

0 1 Il | Il !
0 50 100 150 200 250 300 350

T T
— Measured streamflow at Baja
3-day forecast .

5000

0 | 1 1 1 1 1
0 50 100 150 200 250 300 350
Days

Fig. 4. Measured streamflow at Budapest and B&lanubg at 6 a.m. each day and 1-2-3-day forecasts for Baja using pulse-data system. For
two- and three-day forecasts, measured streamflow on target day minus one at Budapest, simulating a perfect inflow forecast scenario, was us

10000 T T T T T T
— Measured streamflow at Baja .
1-day forecast i
--- Measured streamfiow at Budapest /'
5000 , 1
1
)
0 1 1 1 1 1 1
0 50 100 150 200 250 300 350
10000 T T T T T T
— Measured streamflow at Baja
_ 2-day forecast
2 so0f
t i
(e
0 i 1 1 1 1 1
0 50 100 150 200 250 300 350
10000 T T T T T T
— Measured streamflow at Baja
3-day forecast
5000 1
0 1 1 1 1 1 L
0 50 100 150 200 250 300 350

Days

Fig. 5. Measured streamflow at Budapest and B&janube at 6 a.m. each day and 1-2-3-day forecasts for Baja using sample-data system. For
each forecast, measured streamflow on target day minus one and on target day at Budapest, simulating perfect inflow forecast scenario, was us
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tics. Fig. 3 displays the forecasts when a sample-data system ap- u(t+At)—u(t) u(t+At)—u(t)
proach is used with optimized values of=1, k=0.4d*, and XTT—CDM(HM—T)T'E dr
c=0.8 using a first-order empirical Taylor expansion for estimat-
ing input streamflow at future times. There is not much improve- (29)
ment in predicting the record flood, but clearly there is improve- .
ment with the second largest flood of the figure over the pulse- ILong performs ahchange cl)f varlablesﬁr—k(HAt—T), then
data system approach. By switching from a pulse- to sample-datat® first term of the integral transforms into
system, the mean root-square erfMRSE), combined for the 1 1 Kat px(i-1) 1 1
three lead times, decreased by 10%, while the already high Nash- u(t) PRTEERY f —dr*=u(t) K Tr(i KAL)
Sutcliffe efficiency coefficienfNSEC, see Table)lincreased by (=1 Jo e (i-1)!
1% for the combined forecasts. ]

In the second set of experimentsee Figs. 4 and)5forecasts —u(t) 1 I 'k.At) (30)
for the input values at Budapest were also included in the routing. k T(i)
This again is routine practice with hydrological forecasting ser- i .
vices since a good forecast for the upstream station using flow"\’hereq)iu'_Wa,S used from Eq(14). Similarly, the third term of
information one station further upstream can significantly im- Ed- (29) will yield
prove forecasts from the given station to a downstream one. It t u(t)—u(t+At) T(i kAt)

was assumed here, as an extreme, that these forecasts are perfect, . (31)
i.e., they yield in the exact measured values for future days. This K At (M)
way the effect of upstream prediction errors on the behavior of \\hareas the second term becomes
the forecasts at Baja within the two data system frameworks
could be eliminated. See Table 1 for the new optimized values of 1 1  u(t+At)—u(t) [katg*(i-1) 1
n andk, which shows that the inclusion of forecasted inputs even i =1 ; fo e tHAt— ™ ) dr*
affect the optimum value of the model parameters. The new
MRSE is again improved by 9% when switching from the pulse- u(t+ At —u(t) [1 T(i,kAt)
data system to sample-data system. The NSEC value however is = At [E X0 (t+At)
so high now even with the pulse-data system that it can change
only very little (0.3% by switching between the two data sys- 1 1 KAt (- D)
tems. _ * ok
In summary, it can be stated that the sample-data system ap- k? (i—1)! fo e ds }
proach seems to be better suited for streamflow routing than the ] )
pulse-data system framework because it can account for the con- ~ _ U(t+AD—u(®) [t+At I'(,kAY 1 I +1,kAt)}
tinuously changing streamflow values more efficiently than the At k ') k2 I'(i)
latter one. Both systems use the same kind of information with .
the only difference being that the pulse-data system assumes no ~ _ U(tTAD—u(t) 1+ At I'(i kAD)
change in the input value during the sample interval, while the At k IN(D)
sample-data system assumes a linear change. The two data sys- . kAt
tems can be used with the same state-space model formulation 1 iIGL kAt — (kAt)'e (32)
provided the model is formulated using the sample-data frame- k? IN(D)
work, which this way is a natural generalization of the pulse-data

where the algebraic identity'(a+1x)=al'(a,x) —x% * was

system.

Y used (Abramowitz and Stegun 19%5and where I'(a,x)
Acknowledgments = [§e~'ta~1dt. After combining all three terms one obtains
The writer is grateful to Charles Flowerday, Gabor Balint, and to trat 3 _ 1T .kAY
two anonymous reviewers for their valuable comments on an ear- Jt Ciy(tHAt=mju(r)dr= 1 —Fr— 1+ Ai(AD)]

lier version of the manuscript.
Xu(t+At)—Aj(At)u(t)]

Appendix (33)
In the derivation of Eq(23) one must start from Eq22). For . .
clarity of writing, the steps involved with the integration will be ~ With Ai(At) being
demonstrated on thigh element of the vector-valued integrand. (KAt)i~le—kat i
Theith element ofS(t+ At) in Eq. (22), starting with an initially Aj(At)= TOKAD KAt (34)
relaxed system at timecan be expressed as (i,kAY) t
t+at Eq. (23 Its by defining™} (At
f B, 4(t+At—T)u(r)dr g. (23) results by definind™;(At) as
t T(At)= LT kA 1+ Aj(At 35
t+At u(t+At) —u(t) 1A= Ty AU (39)
= (Di,l(t-FAt_T) U(t)+ A—t(T_t) dr .
t and similarly,I';(At) as
t+At H
_ 1TI'(i,kAt
=ft @ 1(t+At—=7)u(t) +D; o(t+At—17) F'Z(At)=E%Ai(At) (36)
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where the superscriptin theI'; andTI', function definitions de-
notes theth element in then X1 vectors.
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