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State-Space Discretization of the Kalinin-Milyukov-Nash-
Cascade in a Sample-Data System Framework

for Streamflow Forecasting
Jozsef Szilagyi1

Abstract: A discretization of the continuous Kalinin-Milyukov-Nash-cascade is performed with the help of state-space analys
hydrological forecasting of streamflow. A sample-data system approach is used during the discretization and results in discretely
dent values with the continuous model. The sample-data system uses input values measured instantly in time and assumes linea
in the value of the input variable between discrete data measurements. Such description gives a generalized formulation of the p
system approach often used in system engineering and discrete-time analysis of hydrological systems. An example is given to dem
that the approach results in improved forecasts of stream-discharge values when compared with the more traditional pulse-dat
approach.
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Introduction

Hydrological processes, such as streamflow, are rarely meas
continuously in time, and even in the rare events when they
~e.g., by the application of pressure-transducers!, these measure-
ments are subsequently discretized so the resulting discrete va
can be stored and processed on a digital computer. A sample-
system is formed when the value of a variable assigned to disc
points in time corresponds to the instantaneous value of the s
variable—whose value changes smoothly in time—at those
crete time-points. A good example for such a variable is strea
flow which is measured~generally via stage-measurements usi
a rating-curve method! instantly in time. Precipitation, for ex-
ample, is different because one rarely needs instantaneous v
of precipitation intensities; rather one almost exclusively uses
cumulated precipitation values of different durations which
sults in a series of step functions.

Working with discrete data has its consequences because
drological processes, like most other natural phenomena, are
tinuous in time and the models describing them are continuou
well. As a consequence, discretized forms of these continu
models are often required to be formulated to become compa
with the discrete nature of the data available~Sherman 1932!. The
state-space approach of model discretization may be prefe
when the nature of the application requires the handling of mo
uncertainties that may arise from measurement errors or in
equacies in model selection. In the case of operative hydrolog
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forecasting, the correct value of the forecasted river stage dur
floods is critical because a difference of a few percent in the val
may mean the evacuation of densely populated areas. Under s
circumstances, one strives to reduce any possible model unc
tainty which, as of today, is commonly achieved by the applic
tion of certain digital filters, the most notable one having bee
developed by Kalman~1960! in a state-space framework.

The Kalinin-Milyukov-Nash ~KMN !-cascade originally for-
mulated by Nash~1957! for rainfall-runoff modeling, and inde-
pendently of him by Kalinin and Milyukov~1957! for flood rout-
ing, assumes that the constant exponents (m1 and m2) of the
rating curve and that of storage~S! as a function of stage~y! are
equal

Q~ t !5c1@y~ t !#m1 (1a)

S~ t !5c2@y~ t !#m2 (1b)

for a characteristic reach of the stream, whereQ
5stream-discharge;t5time; andc1 andc25constants. Eqs.~1a!
and~1b! yield the linear storage equationQ(t)5kS(t), where the
inverse ofk is the so-called storage coefficient~K! with a dimen-
sion of time. The storage equation combined with the lumpe
version of the continuity equation,dS/dt5Qin2Qout, for the
characteristic reach transform into a first-order, constant coe
cient, linear ordinary differential equation

dS~ t !

dt
52kS~ t !1Qin~ t ! (2)

The linearity condition ensures that the outflow of the characte
istic reach through time can be calculated by the convolutio
integral of the inflow and the impulse response function~h!
@which in hydrology is called the instantaneous unit hydrograp
~IUH!#

Qout~ t !5E
0

t

h~t!Qin~ t2t!dt5E
0

t

h~ t2t!Qin~t!dt (3)

Assuming that a given stream section can be regarded as a se

y

t
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of n characteristic reaches~wheren is an integer number! with
identical storage coefficients, one obtains the well-know
impulse-response function of the continuous KMN-cascade

h~ t !5k
~kt!n21

~n21!!
e2kt (4)

By definition of the characteristic reach one can call such a rea
a linear reservoir where the stored water in the reservoir is d
rectly proportional to the outflow from it. Noticing that the outpu
of the i th reservoir is the input to the (i 11)th reservoir, Eq.~2!
can be written in matrix form for a cascade of ordern as ~e.g.,
Szöllősi-Nagy 1982!

F Ṡ1~ t !

Ṡ2~ t !

Ṡ3~ t !
]

Ṡn~ t !

G5F 2k 0

k 2k

k 2k

� �

0 k 2k

G F S1~ t !
S2~ t !
S3~ t !
]

Sn~ t !

G1F 1
0
0
]

0

GQin~ t !

(5)

where the dot denotes the temporal rate of change in the varia
and the subscripts denote the place of the reservoir in the line
cascade. Eq.~5! is the state equation of the continuous KMN-
cascade, and can be written in a more succinct form as
ix
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Sİ ~ t !5F= SI ~ t !1GI Qin~ t ! (6)

where the state matrixF= is an n3n Toeplitz matrix ~Szöllősi-
Nagy 1982; Nikolski 2002!. The outflow from the last reservoir is
the output of the whole system which can be written as

Qout~ t !5@0,0,0,...,k#F S1~ t !
S2~ t !
S3~ t !
]

Sn~ t !

G5HI SI ~ t ! (7)

The solution of the state equation~6! is given by~Szöllősi-Nagy
1982!

SI ~ t !5F= ~ t,t0!SI ~ t0!1E
t0

t

F= ~ t,t!GI ~t!Qin~t!dt (8)

where for the KMN-cascade the input (GI ) and output (HI ) vectors
are constant vectors, so is the system matrix,F= , which causes the
n3n state transition matrix,F= depend only on the time-lag be-
tweent and t0 . F= is the matrix exponential ofF= such as

F= ~ t,t0!5eF= •~ t2t0! (9)

The elements ofF= are the following:
F= ~ t,t0!53
e2k~ t2t0! 0 0 ¯ 0

k~ t2t0!e2k~ t2t0! e2k~ t2t0! 0 ¯ 0

@k~ t2t0!#2

2!
e2k~ t2t0! k~ t2t0!e2k~ t2t0! e2k~ t2t0!

¯ 0

] ] ] � ]

@k~ t2t0!#n21

~n21!!
e2k~ t2t0!

@k~ t2t0!#n22

~n22!!
e2k~ t2t0!

@k~ t2t0!#n23

~n23!!
e2k~ t2t0!

¯ e2k~ t2t0!
4 (10)
-

t

See Szo¨llősi-Nagy ~1982! for the steps involved with the deriva-
tion of Eq.~10!, where the Toeplitzian property of the state matr
was exploited. Combining Eqs.~7! and~8! and assuming that the
system is initially relaxed,SI (t0)50 at t050, i.e., the reservoirs
are empty, one obtains

Qout~ t !5E
0

t

HI F= ~ t,t!GI Qin~t!dt5E
0

t

h~ t2t!Qin~t!dt

(11)

which is the convolution equation~3! in matrix form. Note that
the left-multiplication ofF= by HI in Eq. ~11! produces the last line
of F= as a row vector multiplied byk, and which upon further
multiplication from right byGI results in the bottom left-most
element ofF= ~multiplied by k!, thus recovering Eq.~4! for the
IUH of the KMN-cascade.

Below it will be shown how the continuous state equation c
be discretized first~1! in a pulse-data system framework follow
ing Szöllősi-Nagy ~1982, 1989! and then~2! in the more general
sample-data system framework which is the main contribution
the present study.
n

f

Discretization of the Continuous State Equation
of the Kalinin-Milyukov-Nash-Cascade
in a Pulse-Data System Framework

When the instantaneous value ofQin is available at discrete time
intervals (t5Dt,2Dt,3Dt,...) of equal length, and the state vari
ableSI is known at timet then, by virtue of Eq.~8!, SI at time t
1Dt can be calculated as~Szöllősi-Nagy 1989!

SI ~ t1Dt !5F= ~ t1Dt,t !SI ~ t !1E
t

t1Dt

F= ~ t1Dt,t!GI Qin~t!dt

(12)

which transforms into the following simpler form provided tha
Qin(t) is taken to be constant at the value it obtains at timet, in
the @ t,t1Dt) interval ~Szöllősi-Nagy 1982!

SI ~ t1Dt !5F= ~Dt !SI ~ t !1GI ~Dt !Qin~ t ! (13)

From Eq.~10! we obtain
/DECEMBER 2003



FI ~Dt !53
e2k~Dt ! 0 0 ¯ 0

k~Dt !e2k~Dt ! e2k~Dt ! 0 ¯ 0

@k~Dt !#2

2!
e2k~Dt ! k~Dt !e2k~Dt ! e2k~Dt !

¯ 0

] ] ] � ]

@k~Dt !#n21

~n21!!
e2k~Dt !

@k~Dt !#n22

~n22!!
e2k~Dt !

@k~Dt !#n23

~n23!!
e2k~Dt !

¯ e2k~Dt !
4 (14)
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where again the time invariance of theF= system matrix was uti-
lized. TheGI vector results from Eq.~12! if the inflow valueQin ,
which is assumed to be constant between the integral bound
brought outside the integral

GI ~Dt !5E
t

t1Dt

F= ~ t1Dt2t!GI dt (15)

The n31GI vector, which in a more general approach is indeed
matrix, is called the input transition matrix in system engineerin
The i th element or row ofGI can be expressed as

G i~Dt !5E
t

t1Dt k~ t1Dt2t! i 21

~ i 21!!
e2k~ t1Dt2t!dt

5
1

k

1

~ i 21!! E0

kDt

xi 21e2xdx

5
1

k

G~ i ,kDt !

~ i 21!!

5
1

k

G~ i ,kDt !

G~ i !
(16)

where thek(t1Dt2t) term, which is never negative, was sub
stituted byx in the integral, and the gamma-function’s proper
for integers i, that G( i ) is equal to (i 21)! was utilized. The
numerator on the right-hand-side of Eq.~16! is the so-called in-
complete gamma function.

The impulse-response function of the continuous KMN
cascade is replaced by the unit-pulse response function in
discrete model, and can be obtained, using the pulse-data sy
approach, by the following recursion~Szöllősi-Nagy 1989!:

SI ~Dt !5F= ~Dt !SI ~0!1GI ~Dt !Qin~0!

SI ~2Dt !5F= ~Dt !SI ~Dt !1GI ~Dt !Qin~Dt !5F= 2~Dt !SI ~0!

1F= ~Dt !GI ~Dt !Qin~0!1GI ~Dt !Qin~Dt !

]

SI ~mDt !5F= m~Dt !SI ~0!1 (
i 50

m21

FI m212 i~Dt !GI ~Dt !Qin~ iDt !

(17)

From Eq.~17! the outflowQout of the cascade att5mDt is

Qout~mDt !5HI SI ~mDt !5HI F= m~Dt !SI ~0!

1 (
i 50

m21

HI F= m212 i~Dt !GI ~Dt !Qin~ iDt ! (18)
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which produces the unit-pulse response function with theSI (0)
50 choice as

h~mDt !5HI F= m21~Dt !GI ~Dt ! (19)

Eq. ~19! is the inner product of the last line ofF= m21 ~multiplied
by k! and theGI vector

h~mDt !5e2k~m21!DtF(
i 51

n
@k~m21!Dt#n21

~n2 i !!

G~ i ,kDt !

G~ i ! G
(20)

where special use was made of the state transition matrix’s d
nition ~Szöllősi-Nagy 1982!

Fm~Dt !5~eFDt!m5eFmDt (21)

Szöllősi-Nagy~1989! proved that the discrete model, given by
the matrix triplet@F= (Dt),GI (Dt),HI # is an adequate representatio
of the continuous KMN-cascade model defined by@F= ,GI ,HI #. Ad-
equacy here means that the discrete version of the continu
KMN-cascade~1! gives identical output values at discrete point
of time with the continuous model, provided the continuou
model receives the same pulsed data input~Nash 1959; O’Connor
1982!, and~2! preserves continuity of the original model.

Discretization of the Continuous State Equation
of the Kalinin-Milyukov-Nash-Cascade
in a Sample-Data System Framework

When applying the KMN-cascade model for flood routing, bot
the input and output variables of the model are generally strea
flow values for larger river networks. The only exception may b
the first upstream gauging station in each subbasin where the fl
values are modeled with precipitation as input to the model.
these locations, the application of the pulse-data system fram
work is well justified since precipitation is generally reported as
constant accumulated value over a given period. At the oth
gauging stations farther downstream, however, the adaptation
sample-data system seems to be more adequate, since stream
as mentioned earlier, is measured instantaneously and chan
continuously between subsequent measurements.

In the sample-data system framework derivation of the d
crete model, it is assumed that streamflow changes linearly
tween any two measurements. With this assumption Eq.~12! can
be written as
LOGIC ENGINEERING © ASCE / NOVEMBER/DECEMBER 2003 / 341
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SI ~ t1Dt !5F= ~Dt !SI ~ t !1E
t

t1Dt

F= ~ t1Dt2t!GI u~t!dt

5F= ~Dt !SI ~ t !1E
t

t1Dt

F= ~ t1Dt2t!GI

3Fu~ t !1
u~ t1Dt !2u~ t !

Dt
~t2t !Gdt (22)

where inflowQin from now on will be denoted withu for easier
notation. Observe that the state transition matrix remains
same, but, as is shown below, not the input transition vectorGI .
See the Appendix for the steps involved with the derivation of
new solution, which becomes

SI ~ t1Dt !5F= ~Dt !SI ~ t !1GI 1~Dt !u~ t1Dt !2GI 2~Dt !u~ t !
(23)

where the elements ofGI 1 are

GI 1~Dt !53
1

k

G~1,kDt !

G~1! F11
e2kDt

G~1,kDt !
2

1

kDt G
1

k

G~2,kDt !

G~2! F11
~kDt !e2kDt

G~2,kDt !
2

2

kDt G
1

k

G~3,kDt !

G~3! F11
~kDt !2e2kDt

G~3,kDt !
2

3

kDt G
]

1

k

G~n,kDt !

G~n! F11
~kDt !n21e2kDt

G~n,kDt !
2

n

kDt G
4 (24)

and the same forGI 2 can be written as

GI 2~Dt !53
1

k

G~1,kDt !

G~1! F e2kDt

G~1,kDt !
2

1

kDt G
1

k

G~2,kDt !

G~2! FkDte2kDt

G~2,kDt !
2

2

kDt G
1

k

G~3,kDt !

G~3! F ~kDt !2e2kDt

G~3,kDt !
2

3

kDt G
]

1

k

G~n,kDt !

G~n! F ~kDt !n21e2kDt

G~n,kDt !
2

n

kDt G
4 (25)

With this result, Eq.~18! becomes

Qout~mDt !5HI SI ~mDt !5HI F= m~Dt !SI ~0!1 (
i 50

m21

HI F= m212 i~Dt !

3$GI 1~Dt !u@~ i 11!Dt#2GI 2~Dt !u~ iDt !% (26)

which shows that the output at timet is not only influenced by the
input att2Dt but also att. This seemingly is a new developme
when compared to the pulse-data system description, where
output at timet does not seem to be influenced by the synch
nous input, as is suggested by Eq.~18!. This however is not quite
so, and here is the explanation.

The two discrete models, given by@F= (Dt),GI (Dt),HI # and
@F= (Dt),GI 1(Dt),GI 2(Dt),HI # are equivalent if their unit-pulse re
sponse functions are identical~Desoer 1970!. In the pulse-data
system framework, the unit-pulse response function can be
tained from Eq.~18! by letting the input to be unity att50 ~when
the system is relaxed! and zero otherwise. This means only o
nonzero value for the discrete input because in the pulse-
342 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / NOVEMBER
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system the constant inputs are indeed interpreted on closed~from
left! and open~from right! time intervals@ t,t1Dt), as is cor-
rectly denoted here. Openness of the time interval from the r
means that the constant value over the interval is not interpr
at time t1Dt, because the input signal jumps to a new value
that time instant and the input cannot have two values simu
neously in time. To the contrary, within the sample-data sys
framework there are no jumps involved in the input signal rep
sentation; thus the unit pulse must be described by two value
unity over the sampling interval@ t,t1Dt#, over which the input
variable is assumed to change linearly and which is closed f
both sides now. Note that the derivation of the unit-pulse respo
in both frameworks requires an integration of the input sig
over the@ t,t1Dt# interval for which the openness or closedne
of the interval does not make any difference, since the value
the integral does not change over a single point.

The unit-pulse response function of the sample-data syste
obtained by lettingu be unity at botht50 andt5Dt, assuming
the system is relaxed. Note that whenever the input value is c
stant over the sampling interval, i.e., holds its last sample va
the two separate input transition vectors,GI 1 andGI 2 collapse into
GI , the input transition vector of the pulse-data system, wh
means that the unit pulse response functions of the two fra
works are identical and so the two models of@F= (Dt),GI (Dt),HI #
and @F= (Dt),GI 1(Dt),GI 2(Dt),HI # are indeed equivalent. Conse
quently, the output att1Dt in both frameworks are influenced b
the simultaneous input; however, this influence is hidden in
pulse-data system representation because of the openness
sampling interval. Note that though the IUH is the same for b
data frameworks, the way the output is calculated is somew
different @i.e., compare Eqs.~18! and ~26!# between the two
frameworks.

The equivalency of the two models does not mean that t
give identical flood routing results since the inputs are assume
behave differently in the two approaches between subseq
samples. If however one assumes that the input does not ch
over the sampling interval in the sample-data system†i.e., u@( i
11)Dt#5u( iDt) is used in Eq.~26!‡, then the pulse-data system
outputs are recovered, meaning that the sample-data system
more general approach which, as a special case, includes
pulse-data system description. Because of the equivalency o
two discrete models, discrete coincidence and continuity of
discrete model for the pulse-data framework will remain valid
the sample-data system framework as well. For a demonstra
of the model’s discrete coincidence with the continuous KM
cascade, see Fig. 1, where a piecewise-linear input signal
routed through the continuous and the discrete models, witn
51, Dt51 @T#, andk50.1 @T21#.

Demonstration of the Discretized Kalinin-Milyukov-
Nash-Cascade for Streamflow Forecasting

Application of Eq.~26! in hydrological forecasting problems a
lows the user to choose between data systems without the ne
changing the model structure. For pulsed data, such as acc
lated precipitation,u at (i 11)Dt in Eq. ~26! is taken equal to the
value ofu at iDt. This may generally be required, when precip
tation is transformed into effective precipitation to be used
input when making streamflow predictions for the first gaug
station along the stream. For other gauging stations downstr
the inputs will be streamflow values in the flow routing betwe
any two gauging stations requiring a sample-data system
/DECEMBER 2003
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proach since streamflow values are measured instantaneous
change smoothly rather than through jumps.

When applying Eq.~26! to forecast streamflow at a dow
stream location using stream-flow information upstream,
value of u at time t1Dt, the time of the forecast, is not y
known. A discrete and empirical version of Taylor’s expans
may be used to estimateu at time t1 iDt ( i 51,2,3), which can
be written as

û~ t1 iDt !5u~ t !1S (
j 51

i

cj D @u~ t !2u~ t2Dt !# (27)

Fig. 1. Routing of piecewise-linear input with continuous and d
crete models using sample-data system approach. Here,n51, Dt
51 @T#, andk50.1 @T21#.
JOURNAL OF HYDRO
nd

if one stops after the first-order term in the expansion employ
a backward-difference scheme and assuming equidistant s
pling; and the same becomes

û~ t1 iDt !5u~ t !1S (
j 51

i

cj D $u~ t !2u~ t2Dt !

10.5@u~ t !22u~ t2Dt !1u~ t22Dt !#% (28)

when using a second-order expansion. The empirical constantc in
the expressions accounts for the random nature of the signal
must be optimized for best results in the estimation. Note t
Eqs.~27! and~28! can be considered as a special, primitive for
of an autoregressive process. The advantage of these equatio
that they contain only one parameter to be optimized. Note a
that the way future input is estimated in our demonstration is
the focus of this study. These estimates are generally availab
operative model forecasts for the upstream gauges using in
even further upstream, when performing this kind of nested-ty
predictions.

Before forecasting, one must estimate the state variable,SI (0)
at the start of the calculations. This can be achieved by inver
Eqs. ~18! and ~26!, respectively, provided they are written in
super-matrix structure where each line consists of Eqs.~18! and
~26!, respectively, withm changing from 1 ton. The so-derived
n3n matrix V5@HI F= ,HI F= 2,...,HI F= n#8 where the prime denotes
the transpose of the matrix, is the observability matrix of t
discrete model, and is never singular providedn>1, k.0, and
Dt.0 ~Szöllősi-Nagy 1987, 1989!.

Stream stages are recorded at 6 a.m. each day for the Da
in Hungary. The stage measurements are transformed into stre
flow using a rating-curve method. In our demonstration of t
discrete model, streamflow at Baja, about 200 km downstream
m
Fig. 2. Measured streamflow at Budapest and Baja~Danube! at 6 a.m. each day and 1-2-3-day forecasts for Baja using pulse-data syste
LOGIC ENGINEERING © ASCE / NOVEMBER/DECEMBER 2003 / 343
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Table 1. Optimized Parameter Values and Model Performance S
tistics of Discrete Model for All Three Lead-Times Combined

Forecasts
Pulse-data

system
Sample-data

system

With no input forecasts

nopt 1 1

kopt @d21# 0.6 0.4

copt ~first order Taylor expansion! — 0.8

Mean root-square error@m3 s21# 423 379
Nash-Sutcliffe efficiency coefficient

@%#5100S 12
(~Q̂i2Qi !

2

(~Qi2mQ!2D
95.8 96.7

With perfect input forecasts

nopt 2 2

kopt @d21# 1 0.9

Mean root-square error@m3 s21# 286 262
Nash-Sutcliffe efficiency coefficient

@%#5100S 12
(~Q̂i2Qi !

2

(~Qi2mQ!2D
98.1 98.4

Note: HeremQ52,317 m3 s21 is mean streamflow~sample size5340) at
Baja. In first case scenario, future streamflow att1 iDt ( i 51,2,3) is
estimated with help of empirical Taylor’s expansion for sample-data s
tem at Budapest, while in pulse-date system it is taken equal to
measured value. In second scenario it was assumed that perfect str
flow forecasts were available at Budapest fort1 iDt ( i 51,2,3), which
means measured streamflow at those days were also used as inpu
routing.
on
-

344 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / NOVEMBER
Budapest, is forecasted from measurements in Budapest w
lead time varying from one to three days. In the first experime
a pulse-data system framework is used while in the second o
sample-data system approach is applied with the discrete mo
In both cases then andk values are optimized by systematical
changing their values within a preset range and accuracy for e
parameter when running the model repeatedly to find the sma
mean root-square errors in the estimates. With the sample-
system approach, the above first- and second-order empi
Taylor-expansions are applied to estimateu at time t1 iDt ( i
51,2,3) from measured data att, with c being a third paramete
to be optimized. The model was run without being continuou
updated, which means the recalculation ofSI (0) for each day
before the new forecast is issued, a common practice in op
tional forecasting to ensure best possible model results. The
jective here is only to show that the model can be run in a pu
and also in a sample-data system approach without changing
thing in the model structure and also to verify whether a sam
data system approach improves the forecasts or not, with
going into details of how to manage errors in the forecasts, wh
can be done with the aforementioned application of the Kalm
filter or by a simple autoregressive model component~Ahsan and
O’Connor 1994!.

Fig. 2 displays the one-, two-, and three-day forecasts for B
using a pulse-data system approach. Note that the last flood e
happened to be a record flood at Budapest and was part o
mayhem Europe experienced in the summer of 2002 with sev
casualties and flood damages in billions of dollars across the
tinent. The model predicted the record flood rather accura
with a 24 h lead-time, but it was less accurate with the sec
largest flood within the display period of the figure. Optimizati
resulted inn51, andk50.6 d21. See Table 1 for the error statis

-

-
t
m-

in
em.
Fig. 3. Measured streamflow at Budapest and Baja~Danube! at 6 a.m. each day and 1-2-3-day forecasts for Baja using sample-data syst
Temporal extrapolation of inflow at Budapest involved a first-order Taylor’s expansion in discrete time.
/DECEMBER 2003



For
as used.
Fig. 4. Measured streamflow at Budapest and Baja~Danube! at 6 a.m. each day and 1-2-3-day forecasts for Baja using pulse-data system.
two- and three-day forecasts, measured streamflow on target day minus one at Budapest, simulating a perfect inflow forecast scenario, w
. For
was used.
Fig. 5. Measured streamflow at Budapest and Baja~Danube! at 6 a.m. each day and 1-2-3-day forecasts for Baja using sample-data system
each forecast, measured streamflow on target day minus one and on target day at Budapest, simulating perfect inflow forecast scenario,
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tics. Fig. 3 displays the forecasts when a sample-data system
proach is used with optimized values ofn51, k50.4 d21, and
c50.8 using a first-order empirical Taylor expansion for estima
ing input streamflow at future times. There is not much improv
ment in predicting the record flood, but clearly there is improv
ment with the second largest flood of the figure over the pul
data system approach. By switching from a pulse- to sample-d
system, the mean root-square error~MRSE!, combined for the
three lead times, decreased by 10%, while the already high Na
Sutcliffe efficiency coefficient~NSEC, see Table 1! increased by
1% for the combined forecasts.

In the second set of experiments,~see Figs. 4 and 5!, forecasts
for the input values at Budapest were also included in the routi
This again is routine practice with hydrological forecasting se
vices since a good forecast for the upstream station using fl
information one station further upstream can significantly im
prove forecasts from the given station to a downstream one
was assumed here, as an extreme, that these forecasts are pe
i.e., they yield in the exact measured values for future days. T
way the effect of upstream prediction errors on the behavior
the forecasts at Baja within the two data system framewo
could be eliminated. See Table 1 for the new optimized values
n andk, which shows that the inclusion of forecasted inputs ev
affect the optimum value of the model parameters. The n
MRSE is again improved by 9% when switching from the puls
data system to sample-data system. The NSEC value howev
so high now even with the pulse-data system that it can cha
only very little ~0.3%! by switching between the two data sys
tems.

In summary, it can be stated that the sample-data system
proach seems to be better suited for streamflow routing than
pulse-data system framework because it can account for the
tinuously changing streamflow values more efficiently than t
latter one. Both systems use the same kind of information w
the only difference being that the pulse-data system assume
change in the input value during the sample interval, while t
sample-data system assumes a linear change. The two data
tems can be used with the same state-space model formula
provided the model is formulated using the sample-data fram
work, which this way is a natural generalization of the pulse-da
system.
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Appendix

In the derivation of Eq.~23! one must start from Eq.~22!. For
clarity of writing, the steps involved with the integration will be
demonstrated on thei th element of the vector-valued integrand
The i th element ofSI (t1Dt) in Eq. ~22!, starting with an initially
relaxed system at timet can be expressed as

E
t

t1Dt

F i ,1~ t1Dt2t!u~t!dt

5E
t

t1Dt

F i ,1~ t1Dt2t!Fu~ t !1
u~ t1Dt !2u~ t !

Dt
~t2t !Gdt

5E
t

t1DtFF i ,1~ t1Dt2t!u~ t !1F i ,1~ t1Dt2t!
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3
u~ t1Dt !2u~ t !

Dt
t2F i ,1~ t1Dt2t!

u~ t1Dt !2u~ t !

Dt
t Gdt

(29)

If one performs a change of variables ast* 5k(t1Dt2t), then
the first term of the integral transforms into

u~ t !
1

k

1

~ i 21!! E0

kDt t* ~ i 21!

et* dt* 5u~ t !
1

k

1

~ i 21!!
G~ i ,kDt !

5u~ t !
1

k

G~ i ,kDt !

G~ i !
(30)

whereF i ,l was used from Eq.~14!. Similarly, the third term of
Eq. ~29! will yield

t

k

u~ t !2u~ t1Dt !

Dt

G~ i ,kDt !

G~ i !
(31)

whereas the second term becomes

1

k

1

~ i 21!!

u~ t1Dt !2u~ t !

Dt E
0

kDt t* ~ i 21!

et* S t1Dt2
1

k
t* Ddt*

5
u~ t1Dt !2u~ t !

Dt F1

k

G~ i ,kDt !

G~ i !
~ t1Dt !

2
1

k2

1

~ i 21!! E0

kDt t* ~ i 21!

et* t* dt* G
5

u~ t1Dt !2u~ t !

Dt F t1Dt

k

G~ i ,kDt !

G~ i !
2

1

k2

G~ i 11,kDt !

G~ i ! G
5

u~ t1Dt !2u~ t !

Dt F t1Dt

k

G~ i ,kDt !

G~ i !

2
1

k2

iG~ i ,kDt !2~kDt ! ie2kDt

G~ i ! G (32)

where the algebraic identityG(a11,x)5aG(a,x)2xae2x was
used ~Abramowitz and Stegun 1965! and where G(a,x)
5*0

xe2tta21dt. After combining all three terms one obtains

E
t

t1Dt

F i ,1~ t1Dt2t!u~t!dt5
1

k

G~ i ,kDt !

G~ i !
@@11L i~Dt !#

3u~ t1Dt !2L i~Dt !u~ t !#

(33)

with L i(Dt) being

L i~Dt !5
~kDt ! i 21e2kDt

G~ i ,kDt !
2

i

kDt
(34)

Eq. ~23! results by definingG1
i (Dt) as

G1
i ~Dt !5

1

k

G~ i ,kDt !

G~ i !
@11L i~Dt !# (35)

and similarly,G2
i (Dt) as

G2
i ~Dt !5

1

k

G~ i ,kDt !

G~ i !
L i~Dt ! (36)
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where the superscripti in the G1 andG2 function definitions de-
notes thei th element in then31 vectors.
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Központ ~VITUKI !, Budapest.
OGIC ENGINEERING © ASCE / NOVEMBER/DECEMBER 2003 / 347


