Carrillo, C.M.2; Muñoz-Arriola, F.; Chen, L. (2023). Multi-scale Sources of Precipitation Predictability in the Northern Great Plains. Preprints 2023120362. https://doi.org/10.20944/preprints202312.0362.v.1 | Online |
Ghosh3, K., and F. Munoz-Arriola (2023). Hysteresis and streamflow-sediment relations across the continuum of natural-to-post dam construction in a highly regulated transboundary Himalayan River. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2023.129885. | |
R. Quiñones, F. Munoz-Arriola, S. D. Choudhury, A. Samal, OSC-CO2: Coattention and Cosegmentation Framework for Plant State Change with Multiple Features, Frontiers in Plant Science, 14: doi: 10.3389/fpls.2023.1211409, October 2023. | Online |
Sarzaeim, P., Muñoz-Arriola, F., Jarquin, D., Aslam, H., & De Leon Gatti, N. (2023). CLIM4OMICS: a geospatially comprehensive climate and multi-OMICS database for maize phenotype predictability in the United States and Canada. Earth System Science Data, 15(9), 3963-3990.https://doi.org/10.5194/essd-15-3963-2023. | Online |
Quiñones, R., Munoz-Arriola, F., Das Choudhury, S., Samal, A. (2021). Multi-feature data repository development and analytics for image cosegmentation in high-throughput plant phenotyping. PLOS ONE, 16(9), 21. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257001 | Online |
Amaranto1, A., F. Pianosi, D. Solomatine, G. Corzo-Perez, and F. Munoz-Arriola (2020). Sensitivity Analysis of Hydroclimatic Controls of Data-driven Groundwater Forecast in Irrigated Croplands. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2020.124957 | Online |
Garret Williams4, Parisa Sarzaeim1, and Francisco Muñoz-Arriola (2020). Simplification of Complex Environmental Variations on Maize-Phenotype Predictability. 2020 ASABE Annual International Meeting, Paper No. 1291. DOI: https://doi.org/10.13031/aim.201291 | |
Kumar, M., F. Munoz-Arriola, H. Furumai, and T Chaminda (2020) RESILIENCE, RESPONSE, AND RISK IN WATER SYSTEMS: SHIFTS IN NATURAL FORCINGS AND MANAGEMENT PARADIGMS. Springer Transactions in Civil and Environmental Engineering. ISBN#978-981-15-4667-9: 395pp. | |
Luciano Alves de Oliveira2, Bryan L Woodbury, Jarbas Honorio de Miranda, and Francisco Munoz-Arriola (2020). Geospatial upscaling of atrazine’s transport using electromagnetic induction across point to field scale. 2020 ASABE Annual International Meeting, Paper No. 884. DOI: https://doi.org/10.13031/aim.202001165.
| Online |
Rico, D.A.1, Carrick Detweiler, and Francisco Muñoz-Arriola (2020). Power-over-Tether UAS Leveraged for Nearly-Indefinite Meteorological Data Acquisition. 2020 ASABE Annual International Meeting, Paper No. 1345. DOI: https://doi.org/10.13031/aim.202001345.
| Online |
Sarzaeim, P1., D. Jarquin, and F. Muñoz-Arriola (2020). Analytics for climate-uncertainty estimation and propagation in maize-phenotype predictions. 2020 ASABE Annual International Meeting, Paper No. 1165. | |
Amaranto1, A., F. Munoz-Arriola, G. Corzo-Perez, and D. Solomatine (2019). A Spatially enhanced data-driven multi-model to improve semi-seasonal groundwater forecasts in the High Plains aquifer, USA. Water Resources Research. DOI:10.1029/2018WR024301. | Online |
Ashish Kumar1, RAAJ Ramsankaran3, Luca Brocca, Francisco Munoz-Arriola (2019). A Machine learning approach for improving near-real-time satellite-based rainfall estimates by integrating soil moisture. Remote Sensing. doi:10.3390/rs11192221. | Online |
Isaak Arslan4, Jake Field4, Cale Harms4, Hallie Hohbein4, Miracle Modey4, B. Ramamurthy, D. Benet. Y-C Chen, and F. Munoz-Arriola (2019). NEO-SAT: An information support system for flood-disaster management. | |
Khan1, M., F. Munoz-Arriola, R. Shaik3, and P. Greer1 (2019). Spatial heterogeneity of temporal shifts in extreme precipitation across India. Journal of Climate Change. DOI: 10.3233/JCC190003. | Online |
Shaik R., F. Munoz-Arriola, D. A. Rico, and S. L. Bartelt-Hunt (2019). Modelling Water Temperature’s Sensitivity to Atmospheric Warming and River Flow. In Environmental Biotechnology: for sustainable future (Eds. R. B. Sobti, N. Arora, and R. Kothari) ISBN 978-981-10-7283-3. | |
Amaranto1, A., F. Munoz-Arriola, G. Meyer, D. Solomatine, and G. Corzo (2018). Semi-seasonal Predictability of Water-table Changes Using Machine Learning Methods in Response to Integrated Hydroclimatic and Management Controls. Journal of Hydroinformatics. | |
Cantú-Guerrero1, J., Craven, J., A. Amaranto1, G. Corzo-Perez, F. Munoz-Arriola (2018). Prototype of Software Platform to Forecast Semiseasonal Well-Level Responses to Climate and Irrigation Scheduling in the High Plains. | |
Herrera-Leon1, L. A., M. Khan1, G. Lopez-Morteo3, and F. Munoz-Arriola (2018). Unified-access mechanisms for Weather, Climate, Water data with geospatial constrains and resolutions. | |
Lawrence-Dill, C.J., Patrick Schnable, Nathan Springer, and: Natalia de Leon, Jode Edwards, David Ertl, Shawn Kaeppler, Nick Lauter, John McKay, Francisco Munoz-Arriola, Seth Murray, Duke Pauli, Nathalia Penna Cruzato, Colby Ratcliff, James Schnable, Kevin Silverstein, Edgar P. Spalding, Addie Thompson, Ruth Wagner, Jason Wallace, Justin Walley, and Jianming Yu (2018). White paper: High Throughput, Field-Based Phenotyping Technologies for the Genomes to Fields (G2F) Initiative. 2018 NIFA FACT Workshop. January 28-30, 2018, 8 pp. | |
Ou2, G., F. Munoz-Arriola, D. Uden2, D. Martin and C. Allen (2018). Climate change implications for irrigation and groundwater in the Republican River Basin, USA. Climatic Change. https://doi.org/10.1007/s10584-018-2278-z. | Online |
Rudnick, D.R., T. Lo, J. Singh1, R. Werle, F. Muñoz-Arriola, T.M. Shaver, C.A. Burr, and T.J. Dorr (2018). Reply to comments on 'Performance assessment of factory and field calibrations for electromagnetic sensors in a loam soil'. 203:272-276. DOI:10.1016/j.agwat.2018.02.036.
| Online |
Singh1, J., T. Lo, D.R. Rudnick, T.J. Dorr, C.A. Burr, R. Werle, T.M. Shaver, and F. Muñoz-Arriola (2018). Performance Assessment of Factory and Field Calibrations for Electromagnetic Sensors in a Loam Soil. Agricultural Water Management.196: 87-98. | |
Uden, D., Allen, C., Munoz-Arriola, F., Ou, G., Shank, N. (2018). A Framework for Tracing Social–Ecological Trajectories and Traps in Intensive Agricultural Landscapes. Sustainability, 10, 1646. | |
Uden, D., Allen, C., Munoz-Arriola, F., Ou, G., Shank, N. (2018). A Framework for Tracing Social–Ecological Trajectories and Traps in Intensive Agricultural Landscapes. Sustainability, 10, 1646. | |
Das, A., F. Munoz-Arriola, S. Singh, and M. Kumar3 (2017). Nutrient Dynamics of Brahmaputra (Tropical River) during Monsoon Period. Desalinization and Water Treatment.doi:10.5004/dwt.2017.20788 | Online |
Shekhar, S., J. Colleti, F. Munoz-Arriola, L. Ramaswamy, C. Krinz, L. Varshney, D. Richardson (2017). Intelligent Infrastructure for Smart Agriculture: An Integrated Food, Energy and Water System. eprint arXiv:1705.01993. 2017arXiv170501993S. A Computing Community Consortium (CCC) white paper, 8 pp. | |
Avery, W., Finkenbiner, C., Franz, T., Wang, T., Nguy-Robertson, A., Munoz-Arriola, F., Suyker, A., Arkebauer, T. 2016. Incorporation of globally available datasets into the cosmic-ray neutron probe method for estimating field scale soil water content. Hy | Online |
Livneh, B., T. Bohn, D. Pierce, F. Munoz-Arriola, B. Nijssen, R. Vose, D. Cayan, L. Brekke (2015): A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern Canada 1950-2013. Nature - Scientific Data, doi:10.1038/sdata.2015.42. | Online |
Frans, C, Istanbulluoglu, E., M. Vimal, F. Munoz-Arriola y D. P. Lettenmaier (2013). On runoff trends in the Upper Mississippi River Basin: influences of climate and land use. Geophysical Research Letters. 40. | |
Wilder, M., G. Garfin, P.Ganster, H. Eakin, P. Romero-Lankao, F. Lara-Valencia, A. Cortez-Lara, S. Mumme, C. Neri, and F. Munoz-Arriola (2013). Impacts of Future Climate Change in the Southwest on Border Communities. In: National Climate Assessment Southwest. | |
Tang, Q., E. Vivoni, F. Munoz-Arriola, and D. P. Lettenmaier (2012). Predictability of evapotranspiration patterns using remotely-sensed vegetation dynamics during the North American monsoon. Journal of Hydrometeorology, 13(1), 103-121. | |
Preisler, H. K., A. L. Westerling, K. M. Gebert, F. Munoz-Arriola, and T. P. Holmes (2011). Spatially Explicit Forecasts of Large Fire Probability and Suppression Costs for California Federal and State Lands. International Journal of Wildland Fire, 20(4), 508-517. | |
Sheffield, J, E. Wood and F. Munoz-Arriola (2010). Long-term regional estimates of evapotranspiration for Mexico based on downscaled ISCCP data. Journal of Hydrometeorology, 11(2), 253-275. | |
| |
Hohbein, H., A. Zhang, Z. Trautman, D. Brecic, and J. Carter. P. Sarzaeim, D. Jarquin, and F. Munoz-Arriola. Prototype of the GEnetics by ENvironment (GEEN): A Phenotype Predictive System. | |
Pandey, V., P. K. Srivastava, R. K. Mall, F. Munoz-Arriola, D. Han (Accepted). Multi-Satellite Precipitation Products for Meteorological Drought Assessment and Forecasting in Bundelkhand region of Central India. Geocarto Internacional | |