Ivon Acosta Ramirez, Nicole M. Iverson, S. Das Choudhury, Programming-Assisted Imaging of Cellular Nitric Oxide Efflux Gradients and Directionality via Carbon Nanotube Sensors, Small Science, February 2025, doi: https://doi.org/10.1002/smsc.202400493 | Online |
K._Chattopadhyay, D. Bhattacharjee, S. Das Choudhury, An Ensemble Model to Estimate SPAD Values from Rice Leaf Images, 6th International Conference on Frontiers in Computing and Systems, September 2025. | |
C. K. Tuggle, J. L. Clarke, B. M. Murdoch, E. Lyons, N. M. Scott, B. Beneš, J. D. Campbell, H. Chung, C. L. Daigle, S. D. Choudhury, J. C. M. Dekkers, J. R. R. Dórea, D. S. Ertl, M. Feldman, B. O. Fragomeni, J. E. Fulton, C. R. Guadagno, D. E. Hagen, A. S. Hess, L. M. Kramer, C. J. Lawrence-Dill, A. E. Lipka, T. Lübberstedt, F. M. McCarthy, P. S. Schnable, Current Challenges and Future of Agricultural Genomes to Phenomes in the USA, Genome Biology, 25(8), January 2024. | Online |
Das Choudhury S, Guadagno CR, Bashyam S, Mazis A, Ewers BE, Samal A and Awada T (2024) Stress phenotyping analysis leveraging autofluorescence image sequences with machine learning. Front. Plant Sci. 15:1353110. doi: 10.3389/fpls.2024.1353110 | Online |
Das Choudhury S, Guadagno CR, Bashyam S, Mazis A, Ewers BE, Samal A and Awada T (2024) Stress phenotyping analysis leveraging autofluorescence image sequences with machine learning. Front. Plant Sci. 15:1353110. doi: 10.3389/fpls.2024.1353110 | Online |
K. J. Bathke, Y. Ge, S. Das Choudhury, J. D. Luck, Enhancing Nutrient-related Stress Detection: High Throughput Phenotyping and Image Analysis for Improved Precision, 16th International Conference on Precision Agriculture, Manhatton, Kansas, USA, July 2024. | |
Srivastava, S., Kumar, N., Malakar, A. et al. A Machine Learning-Based Probabilistic Approach for Irrigation Scheduling. Water Resource Management 38, 1639–1653 (2024). https://doi.org/10.1007/s11269-024-03746-7 | |
A. Das, S. D. Choudhury, A. K. Das, A. Samal, T. Awada, EmergeNet: A Novel Deep-Learning based Ensemble Segmentation Model for Emergence Timing Detection of Coleoptile, Frontiers in Plant Science, 14(2023), February 2023. | Online |
Das Choudhury S, Saha S, Samal A, Mazis A and Awada T (2023) Drought stress prediction and propagation using time series modeling on multimodal plant image sequences. Front. Plant Sci. 14:1003150. doi: 10.3389/fpls.2023.1003150. | Online |
K. T. Joseph, K. Muvva, H. Mwunguzi, A. Haake, C. Liew, A. Balabantaray, S. Behera, A. Kalra, K. K. Vattiam Srikanth, S. Pitla and S. D. Choudhury, CottonHusker: Deep Learning Enabled Cotton Picking Robot for Smart Agriculture, International Conference on Systems and Technology for Smart Agriculture (ICSTA), Kolkata, India, December 2023. | |
K. T. Joseph, K. Muvva, H. Mwunguzi, A. Haake, C. Liew, A. Balabantaray, S. Behera, A. Kalra, K. K. Vattiam Srikanth, S. Pitla and S. Das Choudhury, CottonHusker: Deep Learning Enabled Cotton Picking Robot for Smart Agriculture, International Conference on Systems and Technology for Smart Agriculture, Springer Nature Publishing, ISBN: 978-981-97-5156-3 (ICSTA), Kolkata, India, December 2023. | |
R. Quiñones, F. Munoz-Arriola, S. D. Choudhury, A. Samal, OSC-CO2: Coattention and Cosegmentation Framework for Plant State Change with Multiple Features, Frontiers in Plant Science, 14: doi: 10.3389/fpls.2023.1211409, October 2023. | Online |
S. D. Choudhury, C. Rosaria Guadagno,, University of Nebraska-Lincoln and University of Wyoming AutoFluorescence Dataset (UNL-UW-AFD) to facilitate stress detection and phenotype computation, and also identify genetic variation within Brassica rapa types under drought using autofluorescence imaging. https://plantvision.unl.edu/dataset | Online |
Choudhury, S. D., Guha, S., Das, A., Das, A. K., Samal, A. K., Awada, T. N. (2022). FlowerPhenoNet: Automated Flower Detection from Multi-View Image Sequences Using Deep Neural Networks for Temporal Plant Phenotyping Analysis. REMOTE SENSING, 14(24). | Online |
Fan, X., Zhou, R., Tjahjadi, T., Das Choudhury, S., Ye, Q. (2022). A Segmentation-Guided Deep Learning Framework for Leaf Counting. Frontiers in Plant Science.
| Online |
Bashyam, S., Choudhury, S. D., Samal, A. K., Awada, T. N. (2021). Visual Growth Tracking for Automated Leaf Stage Monitoring Based on Image Sequence Analysis. REMOTE SENSING, 13(5). | Online |
Quiñones, R., Munoz-Arriola, F., Das Choudhury, S., Samal, A. (2021). Multi-feature data repository development and analytics for image cosegmentation in high-throughput plant phenotyping. PLOS ONE, 16(9), 21. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257001 | Online |
Zhou, L., Fan, X., Tjahjadi, T., Das Choudhury, S. (2021). Discriminative attention-augmented feature learning for facial expression recognition in the wild. Neural Computing and Applications. 34: 925–936. | |
A. Samal, S. Das Choudhury, T. Awada (2020) Image-based plant phenotyping: Opportunities and challenges, Intelligent Image Analysis for Plant Phenotyping, CRC Press, Taylor and Francis Group, pp. 3-23. | |
J. D. Jarquin, R. Howard, A. Xavier, S. Das Choudhury (2020) Predicting yield by modelling interactions between canopy coverage image data, genotypic and environmental information for soybeans, "Intelligent Image Analysis for Plant Phenotyping", CRC Press, Taylor and Francis Group, pp. 267-286. | |
S. Das Choudhury (2020) Segmentation techniques and challenges in plant phenotyping, Intelligent Image Analysis for Plant Phenotyping, CRC Press, Taylor and Francis Group, pp. 69-91. | |
S. Das Choudhury, A. Samal, (2020) Structural high-throughput plant phenotyping based on image sequence analysis, Intelligent Image Analysis for Plant Phenotyping, CRC Press, Taylor and Francis Group, pp. 93-117. | |
S. Das Choudhury, S. Goswami, A. Chakrabarti. (2020) Time series and Eigen value based analysis of plant phenotypes, Intelligent Image Analysis for Plant Phenotyping, CRC Press, Taylor and Francis Group, pp. 155-173. | |
S. Das Choudhury, Time Series Modeling for Bridging Phenotype-Genotype Gap and Phenotypic Prediction using Neural Networks, European Conference on Computer Vision Workshop on Computer Vision Problems in Plant Phenotyping (CVPPP), Glasgow, UK, August 2020. | |
Das Choudhury, D., Samal, A., and Awada, T. 2019. Leveraging Image Analysis for High-Throughput Plant Phenotyping. Frontiers in Plant Science. doi: 10.3389/fpls.2019.00508 | Online |
A. Paul, S. Ghosh, A. K. Das, S. Goswami, S. Das Choudhury, S. Sen, A review on agricultural advancement based on computer vision and machine learning, Emerging Technology in Modelling and Graphics: Proceedings of IEM Graph, 2018. | |
Das Choudhury, S., Bashyam, S., Qui, Y., Samal, A., Awada, T. (2018). Holistic and Component Plant Phenotyping using Temporal Image Sequence. Holistic and Component Plant Phenotyping using Temporal Image Sequence, Plant Methods. 14(35). | Online |
Das Choudhury, S., Bashyan, S., Qiu, Y., Samal, A. K., Awada, T. N. (2018). Holistic & component plant phenotyping using temporal image sequence. Holistic & component plant phenotyping using temporal image sequence, 14, 35. | |
Fan, X., Ye, Q., Yang, X., Das Choudhury, S. (2018). Robust Blood Pressure Estimation using a RGB Camera. Robust Blood Pressure Estimation using a RGB Camera. | |
Jarquin, D., Howard, R., Xavier, A., Das Choudhury, S. (2018). Increasing Predictive Ability by Modeling Interactions between Environments. Increasing Predictive Ability by Modeling Interactions between Environments, 8(4). | |
S. Das Choudhury, S. Goswami, S. Bashyam, A. Samal, T. Awada, Automated Stem Angle Determination for Temporal Plant Phenotyping Analysis, ICCV workshop on Computer Vision Problems in Plant Phenotyping (CVPPP), pp. 2022-2029, Venice, Italy, October 2017. | |
S. Das Choudhury, V. Stoerger, A. Samal, J. Schanable, Z. Liang, J-G Yu, Automated Vegetative Stage Phenotyping Analysis of Maize Plants using Visible Light Images, KDD workshop on Data Science for Food, Energy and Water (DS-FEW), San Francisco, California, USA, August 2016. | |
S. D. Choudhury, T. Tjahjadi, 2014. Robust View-Invariant Multiscale Gait Recognition, Pattern Recognition, 48: 798 - 811. | Online |
S. Das Choudhury, Y. Guan, C.-T. Li, Gait Recognition using Low Spatial and Temporal Resolution Videos, International Workshop on Biometrics and Forensics (IWBF), pp. 1-6, Valletta, Malta, March 2014. | |
S. D. Choudhury, T. Tjahjadi, 2013. Gait Recognition Based on Shape and Motion Analysis of Silhouette Contour, Computer Vision and Image Understanding, 117: 1770-1785. | Online |
Y. Guan, C.-T. Li, S. Das Choudhury, Robust Gait Recognition from Extremely Low Frame-Rate Videos, International Workshop on Biometrics and Forensics (IWBF), pp. 1-4, Lisbon, Portugal, April 2013. | |