418 FIC - Nebraska Innovation Campus 1901 North 21st Street Lincoln, NE 68588-6209
Molecular biology of mammalian hibernation
Research in my laboratory is directed toward the characterization of genes and small molecules responsible for the induction and maintenance of hibernation in mammals. Hibernation is seen in a wide-range of taxa including rodents, carnivores, insectivores, bats and even primates. Since the majority of species within these groups do not hibernate, it has been proposed that hibernation results from differential expression of genes common to all mammals, rather than the evolution of new genes unique to the hibernating species. We have used RNAseq and proteomics to identify genes and proteins that are responsible for the physiological characteristics of hibernation in the thirteen-lined ground squirrel Ictidomys tridecemlineatus.
During hibernation body temperature is only a few degrees above 0oC, oxygen consumption holds at 1/30 to 1/50 of the aroused condition and heart rate can be as low as 3-10 beats/minute, compared to 300-400 beats/minute when the animal is active. Mechanisms by which hibernators avoid injury from these extremes are of great biomedical interest because of potential applications in the areas of traumatic brain injury, myocardial infarction, organ preservation, hemorrhagic shock and stroke. We have developed a hibernation-based therapy for hemorrhagic shock and are currently using hibernation strategies to develop new methods for organ preservation. Improvements in preserving donor organs has potential for increasing organ availability for patients on transplant waiting lists worldwide.
Master of Applied Science
Master of Science in Natural Resource Sciencesincluding specializations in
Doctorate of Philosophy in Natural Resource Sciencesincluding specializations in