Global Change, Vulnerability and Resilience: Management options for an Uncertain Future
Collaborator(s): Craig Allen, Dirac Twidwell
Our objectives for this project are to develop models to detect and assess ecological regime shifts in space and time, to identify components of adaptive capacity, and to identify species and techniques that may serve as leading indicators of thresholds of changing ecological regimes. We are utilizing monitoring and surveying data that is currently available in North America (e.g., Breeding Bird Surveys) with novel statistical tools and theory to assess long-term trends in the resilience of landscapes, changes in ecological regimes in both space and time, and species vulnerable to decline and extinction.
We are employing various analytical and statistical techniques to quantify how core attributes of resilience (within-scale and cross-scale distributions of species and their functional traits) change over time in ecosystems and landscapes. Techniques used include, but are not limited to, stochastic modelling, information theory, and discontinuity analysis. Additionally, we will evaluate the significance of individual species to adaptive capacity, and thus the resilience of ecosystems and landscapes. We are conducting these analyses with data from the central United States with focal areas on Department of Defense managed properties, in particular Eglin Air Force Base, Florida, and Fort Riley, Kansas.